yolov8 人体姿态关键点检测

参考:
https://github.com/ultralytics/ultralytics
https://github.com/TommyZihao/Train_Custom_Dataset/tree/main/%E5%85%B3%E9%94%AE%E7%82%B9%E6%A3%80%E6%B5%8B
yolov8 人体姿态关键点检测_第1张图片

##安装
pip install ultralytics -i https://pypi.douban.com/simple

1、命令行运行

pip安装好后就可以yolo 命令运行执行

yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
##检测
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'   

##分割
yolo segment predict model=yolov8n-seg.pt source='https://ultralytics.com/images/bus.jpg'  

##pose
yolo pose predict model=yolov8n-pose.pt source='https://ultralytics.com/images/bus.jpg'

yolo pose predict model=yolov8x-pose-p6.pt source=videos/cxk.mp4 device=0
yolo task=detect mode=predict model=yolov8n.pt source=ultralytics/assets/bus.jpg imgsz=640 show=True save=True

##跟踪
yolo track model=yolov8n.pt source=test.avi show=True save=True

yolov8 人体姿态关键点检测_第2张图片


*** 运行效果,source=0是直接调用本地摄像头

yolo pose predict model=yolov8l-pose.pt source=0 show

yolov8 人体姿态关键点检测_第3张图片

2、转onnx

命令行转:

yolo export model=yolov8n.pt format=onnx opset=12 

python api转:

from ultralytics import YOLO

# 载入pytorch模型
model = YOLO('checkpoint/Triangle_215_yolov8l_pretrain.pt')

# 导出模型
model.export(format='onnx')

3、python接口运行

注意:boxs、keypoints数据获取现在都在data里了
yolov8 人体姿态关键点检测_第4张图片

from ultralytics import YOLO

import cv2
import matplotlib.pyplot as plt


import torch

# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# 载入预训练模型
# model = YOLO('yolov8n-pose.pt')
# model = YOLO('yolov8s-pose.pt')
# model = YOLO('yolov8m-pose.pt')
# model = YOLO('yolov8l-pose.pt')
# model = YOLO('yolov8x-pose.pt')
model = YOLO(r'C:\Users\lonng\Downloads\yolov8l-pose.pt')

# 切换计算设备
model.to(device)

##预测  传入图像、视频、摄像头ID(对应命令行的 source 参数)
img_path = '11.jpg'
results = model(img_path)

##结果

print(len(results),results[0])

结果:
640x512 1 person, 114.0ms
Speed: 8.0ms preprocess, 114.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 640)
1 ultralytics.yolo.engine.results.Results object with attributes:

boxes: ultralytics.yolo.engine.results.Boxes object
keypoints: ultralytics.yolo.engine.results.Keypoints object
keys: [‘boxes’, ‘keypoints’]
masks: None
names: {0: ‘person’} ## 0分类表示person
orig_img: array([[[ 25, 27, 36],
[ 25, 27, 36],
[ 25, 27, 36],
…,
[ 35, 55, 90],
[ 35, 55, 90],
[ 35, 55, 90]],

   [[ 25,  27,  36],
    [ 25,  27,  36],
    [ 25,  27,  36],
    ...,
    [ 35,  55,  90],
    [ 35,  55,  90],
    [ 35,  55,  90]],

   [[ 25,  27,  36],
    [ 25,  27,  36],
    [ 25,  27,  36],
    ...,
    [ 36,  56,  91],
    [ 36,  56,  91],
    [ 36,  56,  91]],

   ...,

   [[ 24,  21,   8],
    [ 24,  21,   8],
    [ 24,  21,   8],
    ...,
    [102, 120, 162],
    [102, 120, 162],
    [102, 120, 162]],

   [[ 22,  22,   8],
    [ 22,  22,   8],
    [ 22,  22,   8],
    ...,
    [102, 120, 162],
    [102, 120, 162],
    [102, 120, 162]],

   [[ 22,  22,   8],
    [ 22,  22,   8],
    [ 22,  22,   8],
    ...,
    [102, 120, 162],
    [102, 120, 162],
    [102, 120, 162]]], dtype=uint8)

orig_shape: (2092, 1600)
path: ‘C:\Users\lonng\Desktop\rdkit_learn\opencv2\11.jpg’
probs: None
speed: {‘preprocess’: 8.000612258911133, ‘inference’: 113.99602890014648, ‘postprocess’: 6.998538970947266}

完整代码

from ultralytics import YOLO

import cv2
import matplotlib.pyplot as plt


import torch

# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# 载入预训练模型
# model = YOLO('yolov8n-pose.pt')
# model = YOLO('yolov8s-pose.pt')
# model = YOLO('yolov8m-pose.pt')
# model = YOLO('yolov8l-pose.pt')
# model = YOLO('yolov8x-pose.pt')
model = YOLO(r'C:\Users\lonng\Downloads\yolov8l-pose.pt')

# 切换计算设备
model.to(device)

##预测  传入图像、视频、摄像头ID(对应命令行的 source 参数)
img_path = '11.jpg'
results = model(img_path)

##结果

print(len(results),results[0])




# 框(rectangle)可视化配置
bbox_color = (150, 0, 0)             # 框的 BGR 颜色
bbox_thickness = 6                   # 框的线宽

# 框类别文字
bbox_labelstr = {
    'font_size':6,         # 字体大小
    'font_thickness':14,   # 字体粗细
    'offset_x':0,          # X 方向,文字偏移距离,向右为正
    'offset_y':-80,        # Y 方向,文字偏移距离,向下为正
}

# 关键点 BGR 配色
kpt_color_map = {
    0:{'name':'Nose', 'color':[0, 0, 255], 'radius':10},                # 鼻尖
    1:{'name':'Right Eye', 'color':[255, 0, 0], 'radius':10},           # 右边眼睛
    2:{'name':'Left Eye', 'color':[255, 0, 0], 'radius':10},            # 左边眼睛
    3:{'name':'Right Ear', 'color':[0, 255, 0], 'radius':10},           # 右边耳朵
    4:{'name':'Left Ear', 'color':[0, 255, 0], 'radius':10},            # 左边耳朵
    5:{'name':'Right Shoulder', 'color':[193, 182, 255], 'radius':10},  # 右边肩膀
    6:{'name':'Left Shoulder', 'color':[193, 182, 255], 'radius':10},   # 左边肩膀
    7:{'name':'Right Elbow', 'color':[16, 144, 247], 'radius':10},      # 右侧胳膊肘
    8:{'name':'Left Elbow', 'color':[16, 144, 247], 'radius':10},       # 左侧胳膊肘
    9:{'name':'Right Wrist', 'color':[1, 240, 255], 'radius':10},       # 右侧手腕
    10:{'name':'Left Wrist', 'color':[1, 240, 255], 'radius':10},       # 左侧手腕
    11:{'name':'Right Hip', 'color':[140, 47, 240], 'radius':10},       # 右侧胯
    12:{'name':'Left Hip', 'color':[140, 47, 240], 'radius':10},        # 左侧胯
    13:{'name':'Right Knee', 'color':[223, 155, 60], 'radius':10},      # 右侧膝盖
    14:{'name':'Left Knee', 'color':[223, 155, 60], 'radius':10},       # 左侧膝盖
    15:{'name':'Right Ankle', 'color':[139, 0, 0], 'radius':10},        # 右侧脚踝
    16:{'name':'Left Ankle', 'color':[139, 0, 0], 'radius':10},         # 左侧脚踝
}

# 点类别文字
kpt_labelstr = {
    'font_size':4,             # 字体大小
    'font_thickness':2,       # 字体粗细
    'offset_x':0,             # X 方向,文字偏移距离,向右为正
    'offset_y':150,            # Y 方向,文字偏移距离,向下为正
}

# 骨架连接 BGR 配色
skeleton_map = [
    {'srt_kpt_id':15, 'dst_kpt_id':13, 'color':[0, 100, 255], 'thickness':5},       # 右侧脚踝-右侧膝盖
    {'srt_kpt_id':13, 'dst_kpt_id':11, 'color':[0, 255, 0], 'thickness':5},         # 右侧膝盖-右侧胯
    {'srt_kpt_id':16, 'dst_kpt_id':14, 'color':[255, 0, 0], 'thickness':5},         # 左侧脚踝-左侧膝盖
    {'srt_kpt_id':14, 'dst_kpt_id':12, 'color':[0, 0, 255], 'thickness':5},         # 左侧膝盖-左侧胯
    {'srt_kpt_id':11, 'dst_kpt_id':12, 'color':[122, 160, 255], 'thickness':5},     # 右侧胯-左侧胯
    {'srt_kpt_id':5, 'dst_kpt_id':11, 'color':[139, 0, 139], 'thickness':5},        # 右边肩膀-右侧胯
    {'srt_kpt_id':6, 'dst_kpt_id':12, 'color':[237, 149, 100], 'thickness':5},      # 左边肩膀-左侧胯
    {'srt_kpt_id':5, 'dst_kpt_id':6, 'color':[152, 251, 152], 'thickness':5},       # 右边肩膀-左边肩膀
    {'srt_kpt_id':5, 'dst_kpt_id':7, 'color':[148, 0, 69], 'thickness':5},          # 右边肩膀-右侧胳膊肘
    {'srt_kpt_id':6, 'dst_kpt_id':8, 'color':[0, 75, 255], 'thickness':5},          # 左边肩膀-左侧胳膊肘
    {'srt_kpt_id':7, 'dst_kpt_id':9, 'color':[56, 230, 25], 'thickness':5},         # 右侧胳膊肘-右侧手腕
    {'srt_kpt_id':8, 'dst_kpt_id':10, 'color':[0,240, 240], 'thickness':5},         # 左侧胳膊肘-左侧手腕
    {'srt_kpt_id':1, 'dst_kpt_id':2, 'color':[224,255, 255], 'thickness':5},        # 右边眼睛-左边眼睛
    {'srt_kpt_id':0, 'dst_kpt_id':1, 'color':[47,255, 173], 'thickness':5},         # 鼻尖-左边眼睛
    {'srt_kpt_id':0, 'dst_kpt_id':2, 'color':[203,192,255], 'thickness':5},         # 鼻尖-左边眼睛
    {'srt_kpt_id':1, 'dst_kpt_id':3, 'color':[196, 75, 255], 'thickness':5},        # 右边眼睛-右边耳朵
    {'srt_kpt_id':2, 'dst_kpt_id':4, 'color':[86, 0, 25], 'thickness':5},           # 左边眼睛-左边耳朵
    {'srt_kpt_id':3, 'dst_kpt_id':5, 'color':[255,255, 0], 'thickness':5},          # 右边耳朵-右边肩膀
    {'srt_kpt_id':4, 'dst_kpt_id':6, 'color':[255, 18, 200], 'thickness':5}         # 左边耳朵-左边肩膀
]


## 解析目标检测预测结果
num_bbox = len(results[0].boxes.cls)
print('预测出 {} 个框'.format(num_bbox))
# 转成整数的 numpy array
bboxes_xyxy = results[0].boxes.xyxy.cpu().numpy().astype('uint32')
print("bboxes_xyxy:",bboxes_xyxy)
## 解析关键点检测预测结果
# print("bboxes_keypoints:",results[0].keypoints.data.cpu().numpy().astype('uint32'))
bboxes_keypoints = results[0].keypoints.data.cpu().numpy().astype('uint32')






for idx in range(num_bbox): # 遍历每个框
    
    # 获取该框坐标
    bbox_xyxy = bboxes_xyxy[idx] 
    
    # 获取框的预测类别(对于关键点检测,只有一个类别)
    bbox_label = results[0].names[0]
    

    img_bgr = cv2.imread(img_path)
    # 画框
    img_bgr = cv2.rectangle(img_bgr, (bbox_xyxy[0], bbox_xyxy[1]), (bbox_xyxy[2], bbox_xyxy[3]), bbox_color, bbox_thickness)
    
    # 写框类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
    img_bgr = cv2.putText(img_bgr, bbox_label, (bbox_xyxy[0]+bbox_labelstr['offset_x'], bbox_xyxy[1]+bbox_labelstr['offset_y']), cv2.FONT_HERSHEY_SIMPLEX, bbox_labelstr['font_size'], bbox_color, bbox_labelstr['font_thickness'])
    
    bbox_keypoints = bboxes_keypoints[idx] # 该框所有关键点坐标和置信度
    
    # 画该框的骨架连接
    for skeleton in skeleton_map:
        
        # 获取起始点坐标
        srt_kpt_id = skeleton['srt_kpt_id']
        srt_kpt_x = bbox_keypoints[srt_kpt_id][0]
        srt_kpt_y = bbox_keypoints[srt_kpt_id][1]
        
        # 获取终止点坐标
        dst_kpt_id = skeleton['dst_kpt_id']
        dst_kpt_x = bbox_keypoints[dst_kpt_id][0]
        dst_kpt_y = bbox_keypoints[dst_kpt_id][1]
        
        # 获取骨架连接颜色
        skeleton_color = skeleton['color']
        
        # 获取骨架连接线宽
        skeleton_thickness = skeleton['thickness']
        
        # 画骨架连接
        img_bgr = cv2.line(img_bgr, (srt_kpt_x, srt_kpt_y),(dst_kpt_x, dst_kpt_y),color=skeleton_color,thickness=skeleton_thickness)
        
    # 画该框的关键点
    for kpt_id in kpt_color_map:
        
        # 获取该关键点的颜色、半径、XY坐标
        kpt_color = kpt_color_map[kpt_id]['color']
        kpt_radius = kpt_color_map[kpt_id]['radius']
        kpt_x = bbox_keypoints[kpt_id][0]
        kpt_y = bbox_keypoints[kpt_id][1]
        
        # 画圆:图片、XY坐标、半径、颜色、线宽(-1为填充)
        img_bgr = cv2.circle(img_bgr, (kpt_x, kpt_y), kpt_radius, kpt_color, -1)
        
        # 写关键点类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
        # kpt_label = str(kpt_id) # 写关键点类别 ID(二选一)
        # kpt_label = str(kpt_color_map[kpt_id]['name']) # 写关键点类别名称(二选一)
        # img_bgr = cv2.putText(img_bgr, kpt_label, (kpt_x+kpt_labelstr['offset_x'], kpt_y+kpt_labelstr['offset_y']), cv2.FONT_HERSHEY_SIMPLEX, kpt_labelstr['font_size'], kpt_color, kpt_labelstr['font_thickness'])




plt.imshow(img_bgr[:,:,::-1])
plt.show()
cv2.imwrite('11_pose.jpg', img_bgr)

yolov8 人体姿态关键点检测_第5张图片

实时摄像头关键点检测

from ultralytics import YOLO

import cv2
import matplotlib.pyplot as plt

import time
import torch

# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# 载入预训练模型
# model = YOLO('yolov8n-pose.pt')
# model = YOLO('yolov8s-pose.pt')
# model = YOLO('yolov8m-pose.pt')
# model = YOLO('yolov8l-pose.pt')
# model = YOLO('yolov8x-pose.pt')
model = YOLO(r'C:\Users\lonng\Downloads\yolov8l-pose.pt')

# 切换计算设备
model.to(device)



# 框(rectangle)可视化配置
bbox_color = (150, 0, 0)             # 框的 BGR 颜色
bbox_thickness = 2                   # 框的线宽

# 框类别文字
bbox_labelstr = {
    'font_size':2,         # 字体大小
    'font_thickness':4,   # 字体粗细
    'offset_x':0,          # X 方向,文字偏移距离,向右为正
    'offset_y':-20,       # Y 方向,文字偏移距离,向下为正
}

# 关键点 BGR 配色
kpt_color_map = {
    0:{'name':'Nose', 'color':[0, 0, 255], 'radius':6},                # 鼻尖
    1:{'name':'Right Eye', 'color':[255, 0, 0], 'radius':6},           # 右边眼睛
    2:{'name':'Left Eye', 'color':[255, 0, 0], 'radius':6},            # 左边眼睛
    3:{'name':'Right Ear', 'color':[0, 255, 0], 'radius':6},           # 右边耳朵
    4:{'name':'Left Ear', 'color':[0, 255, 0], 'radius':6},            # 左边耳朵
    5:{'name':'Right Shoulder', 'color':[193, 182, 255], 'radius':6},  # 右边肩膀
    6:{'name':'Left Shoulder', 'color':[193, 182, 255], 'radius':6},   # 左边肩膀
    7:{'name':'Right Elbow', 'color':[16, 144, 247], 'radius':6},      # 右侧胳膊肘
    8:{'name':'Left Elbow', 'color':[16, 144, 247], 'radius':6},       # 左侧胳膊肘
    9:{'name':'Right Wrist', 'color':[1, 240, 255], 'radius':6},       # 右侧手腕
    10:{'name':'Left Wrist', 'color':[1, 240, 255], 'radius':6},       # 左侧手腕
    11:{'name':'Right Hip', 'color':[140, 47, 240], 'radius':6},       # 右侧胯
    12:{'name':'Left Hip', 'color':[140, 47, 240], 'radius':6},        # 左侧胯
    13:{'name':'Right Knee', 'color':[223, 155, 60], 'radius':6},      # 右侧膝盖
    14:{'name':'Left Knee', 'color':[223, 155, 60], 'radius':6},       # 左侧膝盖
    15:{'name':'Right Ankle', 'color':[139, 0, 0], 'radius':6},        # 右侧脚踝
    16:{'name':'Left Ankle', 'color':[139, 0, 0], 'radius':6},         # 左侧脚踝
}

# 点类别文字
kpt_labelstr = {
    'font_size':1.5,             # 字体大小
    'font_thickness':3,       # 字体粗细
    'offset_x':10,             # X 方向,文字偏移距离,向右为正
    'offset_y':0,            # Y 方向,文字偏移距离,向下为正
}

# 骨架连接 BGR 配色
skeleton_map = [
    {'srt_kpt_id':15, 'dst_kpt_id':13, 'color':[0, 100, 255], 'thickness':2},       # 右侧脚踝-右侧膝盖
    {'srt_kpt_id':13, 'dst_kpt_id':11, 'color':[0, 255, 0], 'thickness':2},         # 右侧膝盖-右侧胯
    {'srt_kpt_id':16, 'dst_kpt_id':14, 'color':[255, 0, 0], 'thickness':2},         # 左侧脚踝-左侧膝盖
    {'srt_kpt_id':14, 'dst_kpt_id':12, 'color':[0, 0, 255], 'thickness':2},         # 左侧膝盖-左侧胯
    {'srt_kpt_id':11, 'dst_kpt_id':12, 'color':[122, 160, 255], 'thickness':2},     # 右侧胯-左侧胯
    {'srt_kpt_id':5, 'dst_kpt_id':11, 'color':[139, 0, 139], 'thickness':2},        # 右边肩膀-右侧胯
    {'srt_kpt_id':6, 'dst_kpt_id':12, 'color':[237, 149, 100], 'thickness':2},      # 左边肩膀-左侧胯
    {'srt_kpt_id':5, 'dst_kpt_id':6, 'color':[152, 251, 152], 'thickness':2},       # 右边肩膀-左边肩膀
    {'srt_kpt_id':5, 'dst_kpt_id':7, 'color':[148, 0, 69], 'thickness':2},          # 右边肩膀-右侧胳膊肘
    {'srt_kpt_id':6, 'dst_kpt_id':8, 'color':[0, 75, 255], 'thickness':2},          # 左边肩膀-左侧胳膊肘
    {'srt_kpt_id':7, 'dst_kpt_id':9, 'color':[56, 230, 25], 'thickness':2},         # 右侧胳膊肘-右侧手腕
    {'srt_kpt_id':8, 'dst_kpt_id':10, 'color':[0,240, 240], 'thickness':2},         # 左侧胳膊肘-左侧手腕
    {'srt_kpt_id':1, 'dst_kpt_id':2, 'color':[224,255, 255], 'thickness':2},        # 右边眼睛-左边眼睛
    {'srt_kpt_id':0, 'dst_kpt_id':1, 'color':[47,255, 173], 'thickness':2},         # 鼻尖-左边眼睛
    {'srt_kpt_id':0, 'dst_kpt_id':2, 'color':[203,192,255], 'thickness':2},         # 鼻尖-左边眼睛
    {'srt_kpt_id':1, 'dst_kpt_id':3, 'color':[196, 75, 255], 'thickness':2},        # 右边眼睛-右边耳朵
    {'srt_kpt_id':2, 'dst_kpt_id':4, 'color':[86, 0, 25], 'thickness':2},           # 左边眼睛-左边耳朵
    {'srt_kpt_id':3, 'dst_kpt_id':5, 'color':[255,255, 0], 'thickness':2},          # 右边耳朵-右边肩膀
    {'srt_kpt_id':4, 'dst_kpt_id':6, 'color':[255, 18, 200], 'thickness':2}         # 左边耳朵-左边肩膀
]


## 逐帧处理函数
def process_frame(img_bgr):
    
    '''
    输入摄像头画面 bgr-array,输出图像 bgr-array
    '''
    
    # 记录该帧开始处理的时间
    start_time = time.time()
    
    results = model(img_bgr, verbose=False) # verbose设置为False,不单独打印每一帧预测结果
    
    # 预测框的个数
    num_bbox = len(results[0].boxes.cls)
    
    # 预测框的 xyxy 坐标
    bboxes_xyxy = results[0].boxes.xyxy.cpu().numpy().astype('uint32') 
    
    # 关键点的 xy 坐标
    bboxes_keypoints = results[0].keypoints.data.cpu().numpy().astype('uint32')
    
    for idx in range(num_bbox): # 遍历每个框

        # 获取该框坐标
        bbox_xyxy = bboxes_xyxy[idx] 

        # 获取框的预测类别(对于关键点检测,只有一个类别)
        bbox_label = results[0].names[0]

        # 画框
        img_bgr = cv2.rectangle(img_bgr, (bbox_xyxy[0], bbox_xyxy[1]), (bbox_xyxy[2], bbox_xyxy[3]), bbox_color, bbox_thickness)

        # 写框类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
        img_bgr = cv2.putText(img_bgr, bbox_label, (bbox_xyxy[0]+bbox_labelstr['offset_x'], bbox_xyxy[1]+bbox_labelstr['offset_y']), cv2.FONT_HERSHEY_SIMPLEX, bbox_labelstr['font_size'], bbox_color, bbox_labelstr['font_thickness'])

        bbox_keypoints = bboxes_keypoints[idx] # 该框所有关键点坐标和置信度

        # 画该框的骨架连接
        for skeleton in skeleton_map:

            # 获取起始点坐标
            srt_kpt_id = skeleton['srt_kpt_id']
            srt_kpt_x = bbox_keypoints[srt_kpt_id][0]
            srt_kpt_y = bbox_keypoints[srt_kpt_id][1]

            # 获取终止点坐标
            dst_kpt_id = skeleton['dst_kpt_id']
            dst_kpt_x = bbox_keypoints[dst_kpt_id][0]
            dst_kpt_y = bbox_keypoints[dst_kpt_id][1]

            # 获取骨架连接颜色
            skeleton_color = skeleton['color']

            # 获取骨架连接线宽
            skeleton_thickness = skeleton['thickness']

            # 画骨架连接
            img_bgr = cv2.line(img_bgr, (srt_kpt_x, srt_kpt_y),(dst_kpt_x, dst_kpt_y),color=skeleton_color,thickness=skeleton_thickness)
                 
        # 画该框的关键点
        for kpt_id in kpt_color_map:

            # 获取该关键点的颜色、半径、XY坐标
            kpt_color = kpt_color_map[kpt_id]['color']
            kpt_radius = kpt_color_map[kpt_id]['radius']
            kpt_x = bbox_keypoints[kpt_id][0]
            kpt_y = bbox_keypoints[kpt_id][1]

            # 画圆:图片、XY坐标、半径、颜色、线宽(-1为填充)
            img_bgr = cv2.circle(img_bgr, (kpt_x, kpt_y), kpt_radius, kpt_color, -1)

            # 写关键点类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
            # kpt_label = str(kpt_id) # 写关键点类别 ID(二选一)
            # kpt_label = str(kpt_color_map[kpt_id]['name']) # 写关键点类别名称(二选一)
            # img_bgr = cv2.putText(img_bgr, kpt_label, (kpt_x+kpt_labelstr['offset_x'], kpt_y+kpt_labelstr['offset_y']), cv2.FONT_HERSHEY_SIMPLEX, kpt_labelstr['font_size'], kpt_color, kpt_labelstr['font_thickness'])
            
    # 记录该帧处理完毕的时间
    end_time = time.time()
    # 计算每秒处理图像帧数FPS
    FPS = 1/(end_time - start_time)

    # 在画面上写字:图片,字符串,左上角坐标,字体,字体大小,颜色,字体粗细
    FPS_string = 'FPS  '+str(int(FPS)) # 写在画面上的字符串
    img_bgr = cv2.putText(img_bgr, FPS_string, (25, 60), cv2.FONT_HERSHEY_SIMPLEX, 1.25, (255, 0, 255), 2)
    
    return img_bgr



# 调用摄像头逐帧实时处理模板
# 不需修改任何代码,只需修改process_frame函数即可
# 同济子豪兄 2021-7-8

# 导入opencv-python
import cv2
import time

# 获取摄像头,传入0表示获取系统默认摄像头
cap = cv2.VideoCapture(1)

# 打开cap
cap.open(0)

# 无限循环,直到break被触发
while cap.isOpened():
    
    # 获取画面
    success, frame = cap.read()
    
    if not success: # 如果获取画面不成功,则退出
        print('获取画面不成功,退出')
        break
    
    ## 逐帧处理
    frame = process_frame(frame)
    
    # 展示处理后的三通道图像
    cv2.imshow('my_window',frame)
    
    key_pressed = cv2.waitKey(60) # 每隔多少毫秒毫秒,获取键盘哪个键被按下
    # print('键盘上被按下的键:', key_pressed)

    if key_pressed in [ord('q'),27]: # 按键盘上的q或esc退出(在英文输入法下)
        break
    
# 关闭摄像头
cap.release()

# 关闭图像窗口
cv2.destroyAllWindows()

yolov8 人体姿态关键点检测_第6张图片

你可能感兴趣的:(YOLO,python,机器学习)