- OneCode UI 核心组件体系分析:继承关系与功能详解
前言在低代码开发平台蓬勃发展的今天,UI组件体系作为连接可视化设计与代码实现的核心纽带,其架构设计直接决定了平台的灵活性、扩展性与开发效率。OneCode作为专注于企业级应用构建的低代码平台,摒弃了传统第三方UI库的集成模式,自主研发了一套完整的UI组件体系。这一体系不仅实现了组件的高度可定制化,更通过创新的继承机制与状态管理,构建了层次清晰、功能完备的组件生态。本文以OneCodeUI组件体系为
- 冒泡排序算法详解(含Python代码实现)
算法_小学生
算法
冒泡排序(BubbleSort)是最基础的排序算法之一,通常用于学习排序算法的入门理解。本文将通过Python代码实现冒泡排序,并详细讲解其原理、执行流程、复杂度分析及适用情况。✨一、算法简介冒泡排序的核心思想是:相邻两个元素比较,将较大的元素不断“冒泡”至右侧,最终实现排序。其基本过程是重复比较相邻的元素,如果顺序错误就交换,重复这一过程,直到没有任何需要交换的为止。二、Python代码实现下面
- PyTorch中 item()、tolist()使用详解和实战示例
点云SLAM
PyTorch深度学习pytorch人工智能python深度学习张量的操作itemtolist
在PyTorch中,.item()和.tolist()是两个常用于从Tensor中提取Python原生数据的方法,尤其在调试、日志记录或将结果传给非张量库时非常有用。下面是它们的详解与代码示例。1..item()方法用途:将仅包含一个元素的张量(即标量张量)转换为对应的Python原生数据类型(float,int,等)。限制:只能用于只包含一个元素的Tensor,否则会报错。示例代码:import
- Spring Cloud Gateway 路由断言匹配规则详解
前言:Gateway的路由断言工厂(RoutePredicateFactories)是用于路由规则匹配的组件,通过这些断言工厂,Gateway能够根据请求的属性,例如:路径、方法、头部信息等,来完成不同的请求转发,本篇分享几种常见的断言工厂及配置方法。Path路由工厂根据请求路径进行匹配#路由唯一标志spring.cloud.gateway.routes[0].id=user-service#路由
- dockerfile详解
你是人间五月天
linux运维服务器
Dockerfile编写:每条保留字指令都必须为大写字母,且后面要跟随至少一个参数指令按照从上到下顺序执行#表示注释每条指令都会创建一个新的镜像层并对镜像进行提交Dockerfile保留字FROM基础镜像,当前新镜像是基于哪个镜像的,指定一个已经存在的镜像作为模板。Dockerfile第一条必须是FROM#FROM镜像名FROMhub.c.163.com/library/tomcatMAINTAI
- Gateway基础配置详解
saltedfish404
gateway
Gateway基础配置详解随着微服务的流行,API网关作为微服务架构中的关键组件,扮演着越来越重要的角色。在众多的API网关解决方案中,SpringCloudGateway以其强大的功能和灵活的配置受到了广泛的关注。本文将详细介绍SpringCloudGateway的基础配置,帮助读者更好地理解和应用这一技术。一、SpringCloudGateway简介SpringCloudGateway是Spr
- gateway基本配置详解
点灯师
杂文gateway
SpringCloudGateway是SpringCloud的一个组件,它基于WebFlux框架,用于构建API网关。API网关是微服务架构中的一个重要组件,它作为系统的入口,负责处理客户端请求,并将请求路由到相应的服务。以下是SpringCloudGateway基本配置的介绍:1.路由配置路由是Gateway配置的核心,它定义了请求如何被转发到目标服务。路由配置包括:id:路由的唯一标识符。ur
- Spring Cloud Gateway 进阶:复杂路由规则与断言组合
CarlowZJ
AI应用落地+AI微服务Gateway
目录一、深入理解断言工厂组合(一)多断言工厂联合使用的优势(二)常用断言工厂组合示例1.Path与Method组合2.Header与Query组合(三)断言工厂组合的顺序敏感性二、自定义断言工厂开发与应用(一)自定义断言工厂的开发步骤(二)自定义断言工厂的应用场景与示例三、路径重写功能详解(一)路径重写的必要性(二)使用StripPrefix过滤器进行路径重写(三)基于自定义过滤器的路径重写四、复
- 【机器学习笔记 Ⅱ】11 决策树模型
巴伦是只猫
机器学习机器学习笔记决策树
决策树模型(DecisionTree)详解决策树是一种树形结构的监督学习模型,通过一系列规则对数据进行分类或回归。其核心思想是模仿人类决策过程,通过不断提问(基于特征划分)逐步逼近答案。1.核心概念节点类型:根节点:起始问题(最佳特征划分点)。内部节点:中间决策步骤(特征判断)。叶节点:最终预测结果(类别或数值)。分支:对应特征的取值或条件判断(如“年龄≥30?”)。2.构建决策树的关键步骤(1)
- 【机器学习笔记Ⅰ】13 正则化代价函数
正则化代价函数(RegularizedCostFunction)详解正则化代价函数是机器学习中用于防止模型过拟合的核心技术,通过在原始代价函数中添加惩罚项,约束模型参数的大小,从而提高泛化能力。以下是系统化的解析:1.为什么需要正则化?过拟合问题:当模型过于复杂(如高阶多项式回归、深度神经网络)时,可能完美拟合训练数据但泛化性能差。解决方案:在代价函数中增加对参数的惩罚,抑制不重要的特征权重。2.
- 【机器学习笔记Ⅰ】6 多类特征
巴伦是只猫
机器学习机器学习笔记人工智能
多类特征(Multi-classFeatures)详解多类特征是指一个特征(变量)可以取多个离散的类别值,且这些类别之间没有内在的顺序关系。这类特征是机器学习中常见的数据类型,尤其在分类和回归问题中需要特殊处理。1.核心概念(1)什么是多类特征?定义:特征是离散的、有限的类别,且类别之间无大小或顺序关系。示例:颜色:红、绿、蓝(无顺序)。城市:北京、上海、广州(无数学意义的大小关系)。动物类别:猫
- 图像分割技术详解:从原理到实践
lanjieying
本文还有配套的精品资源,点击获取简介:图像分割是图像处理领域将图像分解为多个区域的过程,用于图像分析、特征提取等。文章介绍了图像分割的原理,并通过一个将图像划分为2*4子块的示例,展示了如何使用Python和matplotlib库中的tight_subplot函数进行图像分割和展示。文章还探讨了图像分割在不同领域的应用,以及如何在机器学习项目中作为数据预处理步骤。1.图像分割基本概念在图像处理领域
- 【机器学习&深度学习】多分类评估策略
一叶千舟
深度学习【理论】深度学习【应用必备常识】大数据人工智能
目录前言一、多分类3大策略✅宏平均(MacroAverage)✅加权平均(WeightedAverage)✅微平均(MicroAverage)二、类比理解2.1宏平均(MacroAverage)2.1.1计算方式2.1.2适合场景2.1.3宏平均不适用的场景2.1.4宏平均一般用在哪些指标上?2.1.5怎么看macroavg指标?2.1.6宏平均值低说明了什么?2.1.7从宏平均指标中定位模型短板
- ShaderGraph节点解析(136):矩形节点(Rectangle Node)详解
小李也疯狂
#UnityShaderGraphRectangle
目录一、节点功能概述二、端口详解三、控制选项四、技术原理解析4.1数学原理(距离场计算)4.2生成代码解析4.3视觉特性五、应用场景与实战案例5.1UI元素(矩形按钮/面板)场景:在UI中生成无纹理的矩形按钮或面板,支持动态调整大小和圆角(配合其他节点)5.2材质纹理(网格/条纹)场景:为材质添加矩形网格或条纹纹理(如布料格子、屏幕像素感)5.3粒子形状(矩形粒子/条纹)场景:控制粒子的形状为矩形
- ShaderGraph节点解析(124):绕轴旋转节点(Rotate About Axis Node)详解
小李也疯狂
#unityShaderGraphUnity
目录一、节点功能概述二、端口详解控制选项三、技术原理解析3.1数学基础:罗德里格斯旋转公式3.2旋转矩阵构造3.3生成代码解析1.弧度模式(Radians)2.度模式(Degrees)3.4旋转方向:右手定则四、应用场景与实战案例4.1角色骨骼旋转(动画驱动)场景:实现角色手臂绕肱骨(上臂骨)旋转,模拟弯曲动作4.2相机环绕效果(第三人称视角)场景:让相机绕目标物体(如角色)的Y轴旋转,实现环绕观
- Linux内存管理和寻址详解
*烟雨
linux驱动开发网络
1.概念内存管理模式段式:内存分为了多段,每段都是连续的内存,不同的段对应不用的用途。每个段的大小都不是统一的,会导致内存碎片和内存交换效率低的问题。页式:内存划分为多个内存页进行管理,如在Linux系统中,每一页的大小为4KB。由于分了页后,就不会产生细小的内存碎片。但是仍然也存在内存碎片问题。段页式:段式和页式结合。地址类型划分逻辑地址:程序所使用的地址,通常是没被段式内存管理映射的地址,称为
- 【机器学习笔记Ⅰ】7 向量化
巴伦是只猫
机器学习机器学习笔记人工智能
向量化(Vectorization)详解向量化是将数据或操作转换为向量(或矩阵)形式,并利用并行计算高效处理的技术。它是机器学习和数值计算中的核心优化手段,能显著提升代码运行效率(尤其在Python中避免显式循环)。1.为什么需要向量化?(1)传统循环的缺陷低效:Python的for循环逐元素操作,速度慢。代码冗长:需手动处理每个元素。示例:计算两个数组的点积(非向量化)a=[1,2,3]b=[4
- 大语言模型应用指南:ReAct 框架
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
大语言模型应用指南:ReAct框架关键词:大语言模型,ReAct框架,自然语言处理(NLP),模型融合,多模态学习,深度学习,深度学习框架1.背景介绍1.1问题由来近年来,深度学习技术在自然语言处理(NLP)领域取得了显著进展。尤其是大语言模型(LargeLanguageModels,LLMs),如BERT、GPT系列等,通过在大规模无标签数据上进行预训练,获得了强大的语言理解和生成能力。然而,预
- TCP的三次握手和四次挥手:原理与过程详解
在互联网高速发展的今天,网络通信已经成为我们日常生活和工作中不可或缺的一部分。而在众多网络协议中,传输控制协议(TransmissionControlProtocol,TCP)作为互联网协议族的核心协议之一,承担着保障网络通信可靠性的重要任务。TCP协议通过其精心设计的连接管理机制,确保了数据传输的可靠性、有序性和完整性,为上层应用提供了稳定的通信基础。TCP是一种面向连接的、可靠的、基于字节流的
- Angular6 学习笔记——路由详解
男人要霸气
Angular6
angular6.x系列的学习笔记记录,仍在不断完善中,学习地址:https://www.angular.cn/guide/template-syntaxhttp://www.ngfans.net/topic/12/post/2系列目录(1)组件详解之模板语法(2)组件详解之组件通讯(3)内容投影,ViewChild和ContentChild(4)指令(5)路由路由存在的意义一般而言,浏览器具有下
- 大语言模型原理基础与前沿 基于语言反馈进行微调
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿基于语言反馈进行微调作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进展。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等在各项NLP任务上取得了令人瞩目的成绩。然而,如何进一步提高大语言模型的理
- 408考研逐题详解:2010年第18题——CPU寄存器
2010年第18题下列寄存器中,汇编语言程序员可见的是()A.存储器地址寄存器(MAR)\qquadB.程序计数器(PC)\qquadC.存储器数据寄存器(MDR)\qquadD.指令寄存器(IR)解析本题考查的是计算机组成原理中关于CPU寄存器的分类及其可见性,特别是汇编语言程序员的视角。存储器地址寄存器(MAR,MemoryAddressRegister):用于存储CPU即将访问的内存地址(如
- 408考研逐题详解:2010年第17题——内存的地址转换和数据访问
CS创新实验室
考研复习408考研计算机408考研真题计算机考研
2010年第17题下列命中组合情况中,一次访存过程中不可能发生的是()A.TLB未命中,Cache未命中,Page未命中B.TLB未命中,Cache命中,Page命中C.TLB命中,Cache未命中,Page命中D.TLB命中,Cache命中,Page未命中解析本题考查计算机组成原理中主存管理相关的知识点,特别是虚拟内存系统中的地址转换和数据访问流程。题目要求判断在TLB(TranslationL
- 串---暴力字符串匹配算法实现
KYGALYX
数据结构算法数据结构
暴力字符串匹配算法详解暴力字符串匹配算法(BruteForceStringMatchingAlgorithm)是一种简单的字符串匹配算法,它通过逐个比较主串中的字符与模式串中的字符来进行匹配。虽然这种方法简单直观,但在最坏情况下可能需要多次比较,导致效率较低。本文档将详细介绍暴力字符串匹配算法的原理、步骤以及如何在C语言中实现。1.暴力字符串匹配算法原理1.1主串与模式串主串:待搜索的字符串。模式
- Vue 3 中使用路由参数跳转时 watch 触发重复请求问题详解
Vue3中使用路由参数跳转时watch触发重复请求问题详解收藏+点赞+关注,掌握Vue3路由参数监听中的隐藏陷阱,避免详情页、嵌套路由页误触发重复请求!一、问题背景在Vue3项目中,常见需求是:在列表页点击跳转到详情页,传递id参数详情页通过watch(()=>route.query.id)监听路由变化,自动请求数据例如:watch(()=>route.query.id,(newId)=>{fet
- Vue 3 + Element Plus 常见开发问题与解决方案手册
JaysonJin
小问题vue.js前端javascript
Vue3+ElementPlus常见开发问题与解决方案手册本文整理了常见但容易混淆的几个Vue3前端开发问题,包括插槽、原型链、响应式数据处理、v-model报错、样式阴影控制等,建议收藏学习!一、动态插槽fallback原理详解✅场景在组件中使用如下代码:✅疑问为什么加了默认内容,父组件传了插槽就会生效,没传就自动使用默认内容?✅解答这是Vue插槽的fallback(回退)机制:父组件有传插槽,
- SFT(监督微调)详解:零基础入门到精通,一篇详细的入门教程!
AGI大模型老王
人工智能程序员大模型学习AI大模型大模型微调SFT
文章目录具体步骤如下:应用场景优点举例步骤1:预训练模型的选择步骤2:数据收集与标注步骤3:数据预处理步骤4:数据集划分步骤5:加载预训练模型步骤6:数据编码步骤7:创建数据加载器步骤8:定义训练过程步骤9:模型评估步骤10:模型保存零基础入门AI大模型一、全套AGI大模型学习路线二、640套AI大模型报告合集三、AI大模型经典PDF籍四、AI大模型商业化落地方案学习计划:资料领取SFT(监督微调
- 【MySQL】索引(B+树详解)
Brookty
MySQL数据结构mysql数据库后端学习b树数据结构
MySQL(五)索引一、索引的减I/O设计1.读取量2.搜索树2.1方向2.2有序3.分多叉3.1B树弊端:3.2B+树3.2.1非叶子-搜索字段3.2.1.1海量分叉3.2.1.1.1最大式3.2.1.1.2最快式3.2.1.2缓存内存3.2.1.2.1字段总量小3.2.1.2.2时间复杂度3.2.1.3区间搜索向下保留3.2.1.3.1过程3.2.1.3.2模式3.2.1.3.3效果3.2.2
- 四种微调技术详解:SFT 监督微调、LoRA 微调、P-tuning v2、Freeze 监督微调方法
当谈到人工智能大语言模型的微调技术时,我们进入了一个令人兴奋的领域。这些大型预训练模型,如GPT-3、BERT和T5,拥有卓越的自然语言处理能力,但要使它们在特定任务上表现出色,就需要进行微调,以使其适应特定的数据和任务需求。在这篇文章中,我们将深入探讨四种不同的人工智能大语言模型微调技术:SFT监督微调、LoRA微调方法、P-tuningv2微调方法和Freeze监督微调方法。第一部分:SFT监
- Longformer: The Long-Document Transformer(2020-4-10)
不负韶华ღ
深度学习(NLP)transformer深度学习人工智能
模型介绍目前基于Transformer的预训练模型在各项NLP任务纷纷取得更好的效果,这些成功的部分原因在于Self-Attention机制,它运行模型能够快速便捷地从整个文本序列中捕获重要信息。然而传统的Self-Attention机制的时空复杂度与文本的序列长度呈平方的关系,这在很大程度上限制了模型的输入不能太长,因此需要将过长的文档进行截断传入模型进行处理,例如BERT中能够接受的最大序列长
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen