【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十二届

文章目录

    • 前言
    • 一、题目
    • 二、模块初始化
    • 三、代码实现
      • interrupt.h:
      • interrupt.c:
      • main.h:
      • main.c:
    • 四、完成效果
    • 五、总结

前言

一、题目

【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十二届_第1张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十二届_第2张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十二届_第3张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十二届_第4张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十二届_第5张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十二届_第6张图片
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十二届_第7张图片

二、模块初始化

1.LCD这里不用配置,直接使用提供的资源包就行
2.ADC:开启ADCsingle-ended
3.LED:开启PC8-15,PD2输出模式就行了。
4.定时器:TIM4(按键消抖定时器):PSC:80-1,ARR:10000-1,TIM3(输入捕获定时器):PSC:80,ARR:65535,TIM2(输入捕获定时器):PSC:80,ARR:65535
5.打开串口串行输出输入

三、代码实现

bsp组中共有:
【STM32G431RBTx】备战蓝桥杯嵌入式→决赛试题→第十二届_第8张图片

interrupt.h:

#ifndef __INTERRUPT_H__
#define __INTERRUPT_H__

#include "main.h"
#include "stdbool.h"

struct keys
{
	bool key_sta;
	unsigned char key_judge;
	bool single_flag;
	unsigned int key_time;
	bool long_flag;
};

#endif

interrupt.c:

#include "interrupt.h"
#include "tim.h"

struct keys key[4] = {0, 0, 0, 0, 0};

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)
{
	if(htim->Instance == TIM4)
	{
		key[0].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0);
		key[1].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1);
		key[2].key_sta = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_2);
		key[3].key_sta = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0);
		for(unsigned char i = 0; i < 4; i++)
		{
			switch(key[i].key_judge)
			{
				case 0:
				{
					if(key[i].key_sta == 0)
					{
						key[i].key_judge = 1;
						key[i].key_time = 0;
					}
					break;
				}
				case 1:
				{
					if(key[i].key_sta == 0)
					{
						key[i].key_judge = 2;
					}
					else
					{
						key[i].key_judge = 0;
					}
					break;
				}
				case 2:
				{
					if(key[i].key_sta == 1)
					{
						key[i].key_judge = 0;
						if(key[i].key_time < 80)
						{
							key[i].single_flag = 1;
						}
					}
					else
					{
						key[i].key_time++;
						if(key[i].key_time >= 80)
						{
							key[i].long_flag = 1;
						}
					}
					break;
				}
			}
		}
	}
}

/* Captured Values */
uint32_t uwIC2Value1_T2CH2 = 0;
uint32_t uwIC2Value2_T2CH2 = 0;
uint32_t uwHighCapture_T2CH2 = 0;
uint32_t uwLowCapture_T2CH2 = 0;
/* Capture index */
uint16_t uhCaptureIndex_T2CH2 = 0;

/* Frequency Value */
uint32_t uwFrequency_T2CH2 = 0;
double uwDuty_T2CH2 = 0;



/* Captured Values */
uint32_t uwIC2Value1_T3CH2 = 0;
uint32_t uwIC2Value2_T3CH2 = 0;
uint32_t uwHighCapture_T3CH2 = 0;
uint32_t uwLowCapture_T3CH2 = 0;
/* Capture index */
uint16_t uhCaptureIndex_T3CH2 = 0;

/* Frequency Value */
uint32_t uwFrequency_T3CH2 = 0;
double uwDuty_T3CH2 = 0;



/* Captured Values */
uint32_t uwIC1Value1_T3CH1 = 0;
uint32_t uwIC1Value2_T3CH1 = 0;
uint32_t uwHighCapture_T3CH1 = 0;
uint32_t uwLowCapture_T3CH1 = 0;
/* Capture index */
uint16_t uhCaptureIndex_T3CH1 = 0;

/* Frequency Value */
uint32_t uwFrequency_T3CH1 = 0;
double uwDuty_T3CH1 = 0;





void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
	if(htim->Instance == TIM2)
	{
		if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
		{
			if(uhCaptureIndex_T2CH2 == 0)
			{
				/* Get the 1st Input Capture value */
				uwIC2Value1_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
				__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_2, TIM_INPUTCHANNELPOLARITY_FALLING);
				uhCaptureIndex_T2CH2 = 1;
			}
			else if(uhCaptureIndex_T2CH2 == 1)
			{
				/* Get the 2nd Input Capture value */
				uwIC2Value2_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); 
				__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_2, TIM_INPUTCHANNELPOLARITY_RISING);
				/* Capture computation */
				if (uwIC2Value2_T2CH2 > uwIC2Value1_T2CH2)
				{
					uwHighCapture_T2CH2 = (uwIC2Value2_T2CH2 - uwIC2Value1_T2CH2); 
				}
				else if (uwIC2Value2_T2CH2 < uwIC2Value1_T2CH2)
				{
					/* 0xFFFF is max TIM1_CCRx value */
					uwHighCapture_T2CH2 = ((0xFFFFFFFF - uwIC2Value1_T2CH2) + uwIC2Value2_T2CH2) + 1;
				}
				else
				{
					/* If capture values are equal, we have reached the limit of frequency
						 measures */
					Error_Handler();
				}
				uwIC2Value1_T2CH2 = uwIC2Value2_T2CH2;
				uhCaptureIndex_T2CH2 = 2;
				/* Frequency computation: for this example TIMx (TIM1) is clocked by
					 APB2Clk */      
			}
			else if(uhCaptureIndex_T2CH2 == 2)
			{
				uwIC2Value2_T2CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); 
				if (uwIC2Value2_T2CH2 > uwIC2Value1_T2CH2)
				{
					uwLowCapture_T2CH2 = (uwIC2Value2_T2CH2 - uwIC2Value1_T2CH2); 
				}
				else if (uwIC2Value2_T2CH2 < uwIC2Value1_T2CH2)
				{
					/* 0xFFFF is max TIM1_CCRx value */
					uwLowCapture_T2CH2 = ((0xFFFFFFFF - uwIC2Value1_T2CH2) + uwIC2Value2_T2CH2) + 1;
				}
				uwFrequency_T2CH2 = 1000000 / (uwLowCapture_T2CH2 + uwHighCapture_T2CH2);
				uwDuty_T2CH2 = uwHighCapture_T2CH2 * 100.0 / (uwLowCapture_T2CH2 + uwHighCapture_T2CH2);
				uhCaptureIndex_T2CH2 = 0;
			}
		}
	}
	if(htim->Instance == TIM3)
	{
		if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
		{
			if(uhCaptureIndex_T3CH2 == 0)
			{
				/* Get the 1st Input Capture value */
				uwIC2Value1_T3CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
				__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_2, TIM_INPUTCHANNELPOLARITY_FALLING);
				uhCaptureIndex_T3CH2 = 1;
			}
			else if(uhCaptureIndex_T3CH2 == 1)
			{
				/* Get the 2nd Input Capture value */
				uwIC2Value2_T3CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); 
				__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_2, TIM_INPUTCHANNELPOLARITY_RISING);
				/* Capture computation */
				if (uwIC2Value2_T3CH2 > uwIC2Value1_T3CH2)
				{
					uwHighCapture_T3CH2 = (uwIC2Value2_T3CH2 - uwIC2Value1_T3CH2); 
				}
				else if (uwIC2Value2_T3CH2 < uwIC2Value1_T3CH2)
				{
					/* 0xFFFF is max TIM1_CCRx value */
					uwHighCapture_T3CH2 = ((0xFFFF - uwIC2Value1_T3CH2) + uwIC2Value2_T3CH2) + 1;
				}
				else
				{
					/* If capture values are equal, we have reached the limit of frequency
						 measures */
					Error_Handler();
				}
				uwIC2Value1_T3CH2 = uwIC2Value2_T3CH2;
				uhCaptureIndex_T3CH2 = 2;
				/* Frequency computation: for this example TIMx (TIM1) is clocked by
					 APB2Clk */      
			}
			else if(uhCaptureIndex_T3CH2 == 2)
			{
				uwIC2Value2_T3CH2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); 
				if (uwIC2Value2_T3CH2 > uwIC2Value1_T3CH2)
				{
					uwLowCapture_T3CH2 = (uwIC2Value2_T3CH2 - uwIC2Value1_T3CH2); 
				}
				else if (uwIC2Value2_T3CH2 < uwIC2Value1_T3CH2)
				{
					/* 0xFFFF is max TIM1_CCRx value */
					uwLowCapture_T3CH2 = ((0xFFFF - uwIC2Value1_T3CH2) + uwIC2Value2_T3CH2) + 1;
				}
				uwFrequency_T3CH2 = 1000000 / (uwLowCapture_T3CH2 + uwHighCapture_T3CH2);
				uwDuty_T3CH2 = uwHighCapture_T3CH2 * 100.0 / (uwLowCapture_T3CH2 + uwHighCapture_T3CH2);
				uhCaptureIndex_T3CH2 = 0;
				HAL_TIM_IC_Stop_IT(&htim3, TIM_CHANNEL_2);
				HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_1);
			}
		}
		else if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1)
		{
			if(uhCaptureIndex_T3CH1 == 0)
			{
				/* Get the 1st Input Capture value */
				uwIC1Value1_T3CH1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1);
				__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_FALLING);
				uhCaptureIndex_T3CH1 = 1;
			}
			else if(uhCaptureIndex_T3CH1 == 1)
			{
				/* Get the 2nd Input Capture value */
				uwIC1Value2_T3CH1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); 
				__HAL_TIM_SET_CAPTUREPOLARITY(htim, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_RISING);
				/* Capture computation */
				if (uwIC1Value2_T3CH1 > uwIC1Value1_T3CH1)
				{
					uwHighCapture_T3CH1 = (uwIC1Value2_T3CH1 - uwIC1Value1_T3CH1); 
				}
				else if (uwIC1Value2_T3CH1 < uwIC1Value1_T3CH1)
				{
					/* 0xFFFF is max TIM1_CCRx value */
					uwHighCapture_T3CH1 = ((0xFFFF - uwIC1Value1_T3CH1) + uwIC1Value2_T3CH1) + 1;
				}
				else
				{
					/* If capture values are equal, we have reached the limit of frequency
						 measures */
					Error_Handler();
				}
				uwIC1Value1_T3CH1 = uwIC1Value2_T3CH1;
				uhCaptureIndex_T3CH1 = 2;
				/* Frequency computation: for this example TIMx (TIM1) is clocked by
					 APB2Clk */      
			}
			else if(uhCaptureIndex_T3CH1 == 2)
			{
				uwIC1Value2_T3CH1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); 
				if (uwIC1Value2_T3CH1 > uwIC1Value1_T3CH1)
				{
					uwLowCapture_T3CH1 = (uwIC1Value2_T3CH1 - uwIC1Value1_T3CH1); 
				}
				else if (uwIC1Value2_T3CH1 < uwIC1Value1_T3CH1)
				{
					/* 0xFFFF is max TIM1_CCRx value */
					uwLowCapture_T3CH1 = ((0xFFFF - uwIC1Value1_T3CH1) + uwIC1Value2_T3CH1) + 1;
				}
				uwFrequency_T3CH1 = 1000000 / (uwLowCapture_T3CH1 + uwHighCapture_T3CH1);
				uwDuty_T3CH1 = uwHighCapture_T3CH1 * 100.0 / (uwLowCapture_T3CH1 + uwHighCapture_T3CH1);
				uhCaptureIndex_T3CH1 = 0;
				HAL_TIM_IC_Stop_IT(&htim3, TIM_CHANNEL_1);
				HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_2);
			}
		}
	}
}

char RxBuffer[30];
unsigned char BufIndex = 0;
unsigned char Rxdat;

void HAL_UART_RxCpltCallback(UART_HandleTypeDef * huart)
{
	if(huart->Instance == USART1)
	{
		RxBuffer[BufIndex++] = Rxdat;
		HAL_UART_Receive_IT(huart, &Rxdat, 1);
	}
}

main.h:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.h
  * @brief          : Header for main.c file.
  *                   This file contains the common defines of the application.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */

/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __MAIN_H
#define __MAIN_H

#ifdef __cplusplus
extern "C" {
#endif

/* Includes ------------------------------------------------------------------*/
#include "stm32g4xx_hal.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Exported types ------------------------------------------------------------*/
/* USER CODE BEGIN ET */

/* USER CODE END ET */

/* Exported constants --------------------------------------------------------*/
/* USER CODE BEGIN EC */

/* USER CODE END EC */

/* Exported macro ------------------------------------------------------------*/
/* USER CODE BEGIN EM */

/* USER CODE END EM */

/* Exported functions prototypes ---------------------------------------------*/
void Error_Handler(void);

/* USER CODE BEGIN EFP */

/* USER CODE END EFP */

/* Private defines -----------------------------------------------------------*/

/* USER CODE BEGIN Private defines */
#define DATA 0
#define PARA 1
#define MODEA 0
#define MODEB 1
#define CHANNELA 0
#define CHANNELB 1
#define LIGHT 0
#define DARK 1
/* USER CODE END Private defines */

#ifdef __cplusplus
}
#endif

#endif /* __MAIN_H */

main.c:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "interrupt.h"
#include "stdio.h"
#include "lcd.h"
#include "dadc.h"
#include "ldr.h"
#include "led.h"
#include "math.h"
#include "stdlib.h"
#include "string.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
extern uint32_t uwFrequency_T2CH2;
extern double uwDuty_T2CH2;
extern uint32_t uwFrequency_T3CH2;
extern double uwDuty_T3CH2;
extern uint32_t uwFrequency_T3CH1;
extern double uwDuty_T3CH1;
char text[30];
extern struct keys key[4];
double a;
double b;
double aTemp[5] = {0};
double bTemp[5] = {0};
unsigned char TrigMode;
unsigned char Duty_should_convert;
unsigned char DisplayMode;
unsigned int Pax = 20;
unsigned int Pbx = 20;
unsigned int Pf = 1000;//a - b > 80
unsigned char LDRType[2]; // 0ÊÇ×îÐÂ
unsigned char LED;
extern char RxBuffer[30];
extern unsigned char BufIndex;
extern unsigned char Rxdat;
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
void DisposeKey(void);
double Duty2Angle(double Duty, unsigned char channel);
void LCD_Disp(void);
void JudgeLDRTypeChange(void);
void LED_Control(void);
void Rx_Proc(void);
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_ADC2_Init();
  MX_TIM2_Init();
  MX_TIM3_Init();
  MX_TIM4_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
//	HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_1);
	HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_2);
	HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
	getDualADC(&hadc2);
	HAL_Delay(2);
	getDualADC(&hadc2);
	LDR_ReadAODO();//´óÓÚ3000Ëã°µ
	if(trao > 3000)
		LDRType[1] = DARK;
	else
		LDRType[1] = LIGHT;
	getDualADC(&hadc2);
	LDR_ReadAODO();//´óÓÚ3000Ëã°µ
	if(trao > 3000)
		LDRType[0] = DARK;
	else
		LDRType[0] = LIGHT;
	HAL_TIM_Base_Start_IT(&htim4);
	LCD_Init();
	LCD_Clear(Black);
	LCD_SetBackColor(Black);
	LCD_SetTextColor(White);
	HAL_UART_Receive_IT(&huart1, &Rxdat, 1);
	LED_Disp(0x00);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
		getDualADC(&hadc2);
		LDR_ReadAODO();//´óÓÚ3000Ëã°µ
		if(TrigMode == MODEB)
			JudgeLDRTypeChange();
//		sprintf(text, "T2CH2F:%05d D:%.2f%%", uwFrequency_T2CH2, uwDuty_T2CH2);
//		LCD_DisplayStringLine(Line0, text);
//		sprintf(text, "T3CH1F:%05d D:%.2f%%", uwFrequency_T3CH1, uwDuty_T3CH1);
//		LCD_DisplayStringLine(Line1, text);
//		sprintf(text, "T3CH2F:%05d D:%.2f%%", uwFrequency_T3CH2, uwDuty_T3CH2);
//		LCD_DisplayStringLine(Line2, text);
//		sprintf(text, "trao:%04d", trao);
//		LCD_DisplayStringLine(Line3, text);
		if(Duty_should_convert)
		{
			Duty_should_convert = 0;
			aTemp[4] = aTemp[3];
			aTemp[3] = aTemp[2];
			aTemp[2] = aTemp[1];
			aTemp[1] = aTemp[0];
			aTemp[0] = Duty2Angle(uwDuty_T3CH1, CHANNELA);
			bTemp[4] = bTemp[3];
			bTemp[3] = bTemp[2];
			bTemp[2] = bTemp[1];
			bTemp[1] = bTemp[0];
			bTemp[0] = Duty2Angle(uwDuty_T3CH2, CHANNELB);
		}
		if(BufIndex != 0)
		{
			unsigned char Temp = BufIndex;
			HAL_Delay(1);
			if(Temp == BufIndex)
			{
				Rx_Proc();
			}
		}
		DisposeKey();
		LCD_Disp();
		LED_Control();
		LED_Disp(LED);
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3;
  RCC_OscInitStruct.PLL.PLLN = 20;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */
void DisposeKey(void)
{
	if(key[0].single_flag)
	{
		LCD_Clear(Black);
		DisplayMode = !DisplayMode;
		key[0].single_flag = 0;
	}
	if(key[1].single_flag)
	{
		if(DisplayMode == PARA)
		{
			Pax += 10;
			Pbx += 10;
			if(Pax == 70)
				Pax = 10;
			if(Pbx == 70)
				Pbx = 10;
		}
		key[1].single_flag = 0;
	}
	if(key[2].single_flag)
	{
		if(DisplayMode == PARA)
		{
			Pf += 1000;
			if(Pf == 11000)
				Pf = 1000;
		}
		if(DisplayMode == DATA)
		{
			TrigMode = !TrigMode;
		}
		key[2].single_flag = 0;
	}
	if(key[3].single_flag)
	{
		if(TrigMode == MODEA)
		{
			Duty_should_convert = 1;
		}
		key[3].single_flag = 0;
	}
}

void LCD_Disp(void)
{
	if(DisplayMode == DATA)
	{
		LCD_DisplayStringLine(Line1, "        DATA");
		sprintf(text, "   a:%.1f", aTemp[0]);
		LCD_DisplayStringLine(Line2, text);
		sprintf(text, "   b:%.1f", bTemp[0]);
		LCD_DisplayStringLine(Line3, text);
		sprintf(text, "   f:%dHz     ", uwFrequency_T2CH2);
		LCD_DisplayStringLine(Line4, text);
//		sprintf(text, "aDuty%.2f", uwDuty_T3CH1);
//		LCD_DisplayStringLine(Line5, text);
		sprintf(text, "   ax:%d   ", (unsigned int)(fabs(aTemp[1] - aTemp[0])));
		LCD_DisplayStringLine(Line6, text);
		sprintf(text, "   bx:%d   ", (unsigned int)(fabs(bTemp[1] - bTemp[0])));
		LCD_DisplayStringLine(Line7, text);
		sprintf(text, "   mode:%c", 'A' + TrigMode);
		LCD_DisplayStringLine(Line8, text);
	}
	if(DisplayMode == PARA)
	{
		LCD_DisplayStringLine(Line1, "        PARA");
		sprintf(text, "   Pax:%d ", Pax);
		LCD_DisplayStringLine(Line2, text);
		sprintf(text, "   Pbx:%d ", Pbx);
		LCD_DisplayStringLine(Line3, text);
		sprintf(text, "   Pf:%d    ", Pf);
		LCD_DisplayStringLine(Line4, text);
	}
}

void Rx_Proc(void)
{
	if(BufIndex == 2)
	{
		if(RxBuffer[0] == 'a' && RxBuffer[1] == '?')
		{
			printf("a:%.1f\r\n", aTemp[0]);
		}
		else if(RxBuffer[0] == 'b' && RxBuffer[1] == '?')
		{
			printf("b:%.1f\r\n", bTemp[0]);
		}
		else
			printf("error\r\n");
	}
	else if(BufIndex == 3)
	{
		if(RxBuffer[0] == 'a' && RxBuffer[1] == 'a' && RxBuffer[2] == '?')
		{
			printf("aa:%.1f-%.1f-%.1f-%.1f-%.1f\r\n", aTemp[4], aTemp[3], aTemp[2], aTemp[1], aTemp[0]);
		}
		else if(RxBuffer[0] == 'b' && RxBuffer[1] == 'b' && RxBuffer[2] == '?')
		{
			printf("bb:%.1f-%.1f-%.1f-%.1f-%.1f\r\n", bTemp[4], bTemp[3], bTemp[2], bTemp[1], bTemp[0]);
		}
		else if(RxBuffer[0] == 'q' && RxBuffer[1] == 'a' && RxBuffer[2] == '?')
		{
			double temp[5];
			double _, __;
			temp[0] = aTemp[0];
			temp[1] = aTemp[1];
			temp[2] = aTemp[2];
			temp[3] = aTemp[3];
			temp[4] = aTemp[4];
//			temp[0] = 4;
//			temp[1] = 7;
//			temp[2] = 10;
//			temp[3] = 5;
//			temp[4] = 8;
			for(unsigned char i = 0; i < 5; i++)
			{
				for(unsigned char j = i+1; j < 5; j++)
				{
					if(temp[i] >= temp[j])
					{
						_ = temp[i];
						__ = temp[j];
						temp[i] = __;
						temp[j] = _;
					}
				}
			}
			printf("qa:%.1f-%.1f-%.1f-%.1f-%.1f\r\n", temp[0], temp[1], temp[2], temp[3], temp[4]);
		}
		else if(RxBuffer[0] == 'q' && RxBuffer[1] == 'b' && RxBuffer[2] == '?')
		{
			double temp[5];
			double _, __;
			temp[0] = bTemp[0];
			temp[1] = bTemp[1];
			temp[2] = bTemp[2];
			temp[3] = bTemp[3];
			temp[4] = bTemp[4];
//			temp[0] = 4;
//			temp[1] = 7;
//			temp[2] = 10;
//			temp[3] = 5;
//			temp[4] = 8;
			for(unsigned char i = 0; i < 5; i++)
			{
				for(unsigned char j = i+1; j < 5; j++)
				{
					if(temp[i] >= temp[j])
					{
						_ = temp[i];
						__ = temp[j];
						temp[i] = __;
						temp[j] = _;
					}
				}
			}
			printf("qb:%.1f-%.1f-%.1f-%.1f-%.1f\r\n", temp[0], temp[1], temp[2], temp[3], temp[4]);
		}
		else
			printf("error\r\n");
	}
	else
		printf("error\r\n");
	memset(RxBuffer, 0, 30);
	BufIndex = 0;
}

double Duty2Angle(double Duty, unsigned char channel)
{
	if(channel == CHANNELA)
	{
		if(Duty < 10.0)
		{
			return 0;
		}
		else if(Duty >= 10.0 && Duty <= 90.0) //(10, 0),(90, 180) k = (180.0 / 80.0) y1 = k * x1 + b ->b = y1 - k * x1 = 0 - (180.0 / 80.0) * 10 = -180.0 / 8.0
		{
			return ((180.0 / 80.0) * Duty - 180.0 / 8.0);
		}
		else if(Duty > 90.0)
		{
			return 180.0;
		}
		else
			return (-1);
	}
	else if(channel == CHANNELB)
	{
		if(Duty < 10.0)
		{
			return 0;
		}
		else if(Duty >= 10.0 && Duty <= 90.0) //(10, 0),(90, 90) k = (90.0 / 80.0) b = - 90.0 / 8.0
		{
			return ((90.0 / 80.0) * Duty - 90.0 / 8.0);
		}
		else if(Duty > 90.0)
		{
			return 90.0;
		}
		else
			return (-1);
	}
	else
		return (-1);
}

void JudgeLDRTypeChange(void)
{
	if(trao > 3000)
	{
		LDRType[1] = LDRType[0];
		LDRType[0] = DARK;
		if(LDRType[1] == LIGHT)
			Duty_should_convert = 1;
	}
	else
	{
		LDRType[1] = LDRType[0];
		LDRType[0] = LIGHT;
	}
}

void LED_Control(void)
{
	if((unsigned int)(fabs(aTemp[0] - aTemp[1])) > Pax)
	{
		LED = LED & 0xfe | 0x01;
	}
	else
	{
		LED = LED & 0xfe;
	}
	if((unsigned int)(fabs(bTemp[0] - bTemp[1])) > Pbx)
	{
		LED = LED & 0xfd | 0x02;
	}
	else
	{
		LED = LED & 0xfd;
	}
	if(uwFrequency_T2CH2 > Pf)
	{
		LED = LED & 0xfb | 0x04;
	}
	else
	{
		LED = LED & 0xfb;
	}
	if(TrigMode == MODEA)
	{
		LED = LED & 0xf7 | 0x08;
	}
	else
	{
		LED = LED & 0xf7;
	}
	if(aTemp[0] - bTemp[0] > 80.0 && aTemp[0] - bTemp[0] < 100.0)
	{
		LED = LED & 0xef | 0x10;
	}
	else
	{
		LED = LED & 0xef;
	}
}

int fputc(int ch, FILE *f)
{
	HAL_UART_Transmit(&huart1, (unsigned char *)&ch, 1, HAL_MAX_DELAY);
	return ch;
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

四、完成效果

蓝桥杯嵌入式第十二届国赛试题实现效果

五、总结

本篇文章只是为了存放我的代码,所以看不懂很正常,如果需要代码可以找我私信。

你可能感兴趣的:(stm32,蓝桥杯,单片机)