- python 调用ffmpeg获取影片信息_python直接调用ffmpeg
weixin_39779528
python调用ffmpeg获取影片信息
ffmpeg是一个强大的开源命令行多媒体处理工具。关于ffmpeg的安装问题,可以看之前发的《ffmpeg的安装和简单使用》。ffmpeg如此强大,那么能不能用python调用并实现它的所有功能呢,答案自然是肯定的。要实现在python中调用ffmpeg,需要了解一下subprocess模块。简单来说,subprocess模块就相当于一个包壳的命令行,原则上可以在命令行中实现的事情都可以使用sub
- AI 大模型创业:如何利用商业优势?
AI天才研究院
大数据AI人工智能ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章:AI大模型概述1.1AI大模型的概念与演进AI大模型(Large-scaleArtificialIntelligenceModels)是指通过大规模数据训练得到的复杂神经网络模型。这些模型通常具有数十亿甚至千亿个参数,能够实现从自然语言处理到计算机视觉、语音识别等广泛领域的任务。AI大模型的概念起源于20世纪80年代,当时研究人员提出了深度学习(DeepLearning)这一概念。深度学习
- AI绘画能取代设计师吗?
网络安全我来了
IT技术AI作画
AI绘画能取代设计师吗?在日益数字化的时代,人工智能(AI)正在快速渗透我们的生活和工作中。特别是在设计领域,AI绘画这一新兴技术引发了热烈讨论。你是否也曾好奇,AI绘画是否有可能取代设计师的工作?让我们一同探讨这个引人深思的话题。1.AI绘画的现状1.1AI绘画技术的形成与发展AI绘画的背后,离不开图像风格迁移、图文预训练模型和扩散模型这三大技术的共同推动。有点像是一位多才多艺的音乐家,利用不同
- AI会对你的行业产生什么影响
网络安全我来了
IT技术人工智能
AI对行业的影响:全面解析与展望在当今这个瞬息万变的时代,人工智能(AI)正如同一个强大的引擎,驱动着各个行业的迅猛发展。这不仅仅是一种技术的崛起,更是全球经济和社会结构的深刻变革。今天,让我们深入解析AI,尤其是生成式AI,如何影响我们的工作与生活,以及我们可以期待的未来。生成式AI的迅猛崛起生成式AI的定义与特点生成式AI,简单来说,就是机器学习的一个分支,通过学习大量数据,生成新的内容。这就
- 9. 马科维茨资产组合模型+FF5+GARCH风险模型优化方案(理论+Python实战)
AI量金术师
金融资产组合模型进化论python开发语言金融人工智能机器学习算法
目录0.承前1.核心风险函数代码讲解1.1数据准备和初始化1.2单资产GARCH建模1.3模型拟合和波动率预测1.4异常处理机制1.5相关系数矩阵计算1.6构建波动率矩阵1.7计算协方差矩阵1.8确保矩阵对称性1.9确保矩阵半正定性1.10格式转换和返回1.11calculate_covariance_matrix函数汇总2.代码汇总3.反思3.1不足之处3.2提升思路4.启后0.承前本篇博文是对
- 【PDF合并】利用 Python 合并 PDF 文件
Encarta1993
toolspdf
依赖安装pipinstallPyPDF2在Python中,可以使用PyPDF2模块来合并多个PDF文件。fromPyPDF2importPdfFileMerger#创建一个PdfFileMerger对象merger=PdfFileMerger()#添加要合并的PDF文件pdf_files=['file1.pdf','file2.pdf','file3.pdf']forpdf_fileinpdf_f
- python保存和调用模型
sphinxrascal168
大幅度
2.创建文件目录,保存模型importosfromsklearn.externalsimportjoblib#创建文件目录dirs='testModel'ifnotos.path.exists(dirs):os.makedirs(dirs)#保存模型joblib.dump(LR,dirs+'/LR.pkl')3.读取模型#读取模型LR=joblib.load(dirs+'/LR.pkl')test
- 语言模型与向量模型:深入解析与实例剖析
♢.*
语言模型人工智能自然语言处理
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!在自然语言处理领域,语言模型和向量模型
- Cursor AI
Anjgst
人工智能
CursorAI完整指南:AI驱动的新一代编程工具目录简介主要特性安装与设置核心功能详解使用技巧价格方案常见问题简介CursorAI是一个基于VSCode的革命性AI驱动代码编辑器,它将人工智能与传统编程环境完美结合,为开发者提供更智能、更高效的编程体验。主要特性1.AI智能补全Tab智能补全:通过AI预测并补全多行代码上下文感知:理解整个项目结构和编码风格多语言支持:支持所有主流编程语言2.代码
- Python 调用常见大模型 API 全解析
♢.*
python开发语言语言模型nlp
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、JAVA、PYTHON与SAP的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!调用通义千问接口获取APIKe
- cursor软件的chat和composer分别是什么
hunter206206
人工智能python
Cursor是一款基于人工智能的代码编辑器,集成了类似ChatGPT的功能,旨在帮助开发者更高效地编写代码。以下是Cursor中Chat和Composer的具体功能:1.ChatCursor中的Chat是一个基于AI的聊天功能,类似于ChatGPT,但专门为编程场景优化。它的主要用途包括:代码解释:帮助你理解代码的功能或逻辑。代码生成:根据自然语言描述生成代码片段。代码优化:提供代码优化建议或重构
- Ubuntu 手动安装 Open WebUI 完整指南
老大白菜
pythonubuntulinux运维
Ubuntu手动安装OpenWebUI完整指南前提条件在安装OpenWebUI之前,请确保您的系统满足以下要求:Ubuntu22.04LTS或更高版本Python3.10+Node.js18+Git至少4GB内存足够的磁盘空间(推荐20GB以上)安装步骤1.更新系统包sudoaptupdatesudoaptupgrade-y2.安装必要的依赖#安装Python和Node.jssudoaptinst
- Python中try-except-else-finally语句用于处理异常
上趣工作室
pythonpython开发语言
在Python中,try-except-else-finally语句用于处理异常和无论是否发生异常都需要执行的代码块。下面是每个部分的用法:try:在try块中编写可能引发异常的代码。如果没有异常发生,程序将继续执行try块后面的代码;如果发生异常,程序将跳到适当的except块。except:在except块中处理特定类型的异常。可以指定一个或多个异常类型,以及相应的处理代码。如果发生指定类型的
- .net如何调用python
轮胎技术Tyretek
python开发语言pycharmide
.NET可以通过调用Python的执行文件或者Python库来调用Python代码。一种常用的方法是在.NET中使用Process类调用Python的执行文件。这样做的好处是你可以将Python代码打包成独立的文件,不需要在.NET中引用任何Python相关的库。下面是一个示例,假设你有一个Python文件"test.py",内容如下:defgreet(name):print("Hello,"+n
- vb调用python函数_vb.net / C# 调用 python
weixin_39522170
vb调用python函数
1.IronPython简介IronPython是一种在.NET及Mono上的Python实现,由微软的JimHugunin所发起,是一个开源的项目,基于微软的DLR引擎;托管于微软的开源网站CodePlex(www.codeplex.com)。2.安装IronPython安装下载下来的安装包(要先装VS)。3.创建项目添加引用:浏览到IronPython的安装目录中,添加对IronPython.
- Python 爬虫实战:从喜马拉雅爬取有声书播放量,挖掘热门音频内容
西攻城狮北
python爬虫音视频实战案例
目录引言一、项目背景与需求分析1.1喜马拉雅平台的特点1.2数据爬取目标二、技术选型与工具准备2.1技术选型2.2工具准备三、爬取有声书播放量数据3.1获取音频列表3.2获取音频详情四、数据存储五、数据处理与分析5.1数据清洗5.2数据分析六、可视化展示七、总结与展望引言喜马拉雅作为国内知名的音频分享平台,拥有海量的有声书、广播剧、音乐等内容。通过爬取喜马拉雅上的有声书播放量数据,我们可以分析哪些
- AI编译器之——为什么大模型需要Relax?
FF-Studio
人工智能深度学习自然语言处理机器学习语言模型
放在最前:Relax的关键创新深度学习模型(比如ChatGPT这种大模型)在运行时经常遇到“输入尺寸不固定”的情况。比如你问它一个问题,这次输入是10个字,下次可能是100个字。传统编译器处理这种“变来变去”的尺寸很笨——要么只能按固定尺寸优化(导致变尺寸时性能暴跌),要么每次都要重新编译(慢到没法用)。Relax的创新:符号形状:让编译器学会“代数”Relax允许编译器用“符号变量”(比如n)表
- Ubuntu交叉编译 arm板子上的TVM
陈有爱
TVMubuntu人工智能
目录X86Ubuntu的TVM安装LLVM下载tvm配置config.cmake编译源码python安装测试是否安装成功可以在安装一些库,用于RPCTracker和auto-tuning交叉编译801arm的TVM交叉编译链下载配置config.cmake编译源码编译的时候可能会遇到错误ONNX模型转换为TVM模型创建pre.py,将onnx模型编译成tvm.so文件测试TVM模型修改demo程序
- 【Python入门基础】——第1篇:从入门到精通:Python简介与环境搭建详解
猿享天开
python从入门到精通python开发语言
第1篇:Python简介与环境搭建目录什么是Python?Python的历史与特点安装Python解释器配置开发环境选择合适的集成开发环境(IDE)使用文本编辑器运行第一个Python程序常见问题及解决方法总结什么是Python?Python是一种高级、通用、解释型的编程语言,由GuidovanRossum于1991年首次发布。Python以其简洁易读的语法、广泛的应用领域和强大的社区支持,成为全
- python与excel整合全教程
刘同学Python学习日记
pythonexcel开发语言
Python与Excel的整合非常强大,尤其适合处理大数据、自动化表格操作以及进行高级数据分析。以下是一个全教程,涵盖常用的Python库及其应用:1.准备工作安装必要的库:使用以下命令安装常用库:pipinstallopenpyxlpandasxlrdxlsxwriterpywin32openpyxl:用于操作Excel的.xlsx文件(推荐)。pandas:强大的数据分析工具,支持读取和写入E
- 高效目录操作:如何使用 os.listdir 函数列出文件和文件夹
刘同学Python学习日记
学习记录os库python学习
在Python中,os.listdir()是一个用于列出指定目录下所有文件和子目录名称的函数。它来自于os模块,该模块提供了与操作系统进行交互的多种功能。importos#列出当前目录下的所有文件和子目录entries=os.listdir('.')print(entries)在这个示例中:os.listdir('.')将返回当前工作目录(用.表示)的所有文件和目录的名称列表。entries变量将
- 【AI中数学-数理统计-综合实例-包括python实现】 揭开数据的面纱:真实样本数据的探索与可视化
云博士的AI课堂
AI中的数学人工智能python数理统计数据预处理数据探索数据可视化机器学习
第五章:数理统计-综合实例1.揭开数据的面纱:真实样本数据的探索与可视化在人工智能(AI)应用中,数据是构建算法和模型的基石,而数理统计则为我们提供了理解和处理这些数据的工具。数据探索和可视化是数理统计中至关重要的步骤,它们不仅能帮助我们理解数据的分布、关系和趋势,还能够为后续的建模工作提供依据。本节将通过五个实际案例,展示如何使用数理统计和可视化技术对真实样本数据进行探索。每个案例都包括具体的描
- Python.NET 安装与使用教程
卫伊祺Ralph
Python.NET安装与使用教程项目地址:https://gitcode.com/gh_mirrors/py/pythonnet本教程将指导你了解并安装Python.NET——这是一个让Python程序员能够无缝集成.NET框架的开源库。1.项目目录结构及介绍在克隆或下载pythonnet的源代码仓库后,你会看到以下基本目录结构:pythonnet/├──LICENSE#许可文件├──MANIF
- Apache TVM:开源深度学习编译器栈的领跑者
计攀建Eliza
ApacheTVM:开源深度学习编译器栈的领跑者tvmOpendeeplearningcompilerstackforcpu,gpuandspecializedaccelerators项目地址:https://gitcode.com/gh_mirrors/tv/tvm项目介绍ApacheTVM是一个专为深度学习系统设计的编译器栈。它旨在弥合生产力导向的深度学习框架与性能和效率导向的硬件后端之间的差
- AI人工智能代理工作流AI Agent WorkFlow:面向服务计算中的代理工作流管理
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:面向服务计算中的代理工作流管理关键词:人工智能,代理工作流,服务计算,自动执行,智能调度,协同处理,流程管理1.背景介绍1.1问题的由来随着互联网和云计算的快速发展,服务计算作为一种分布式计算模式,已经成为企业信息化建设的重要方向。在服务计算中,工作流技术被广泛应用于业务流程的建模、执行和管理。然而,传统的基于BPM(业务流程管理)的工作流管理
- Apple M1 ARM MacBook 安装 Apache TVM
FF-Studio
arm开发apache
一、前置准备AppleSiliconMacBook本文以AppleM1/M2为例,M3及后续版本同理。已安装HomebrewmacOS上的包管理器,可前往Homebrew官网查看安装指引。已安装Anaconda或Miniforge确保Conda是ARM版本(通过condainfo|grepplatform验证应为osx-arm64)。二、创建并激活Conda环境在终端创建环境(Python3.8为
- python学习专栏
zhousenshan
python新赛道python
推荐学习资料《15分钟轻松学Python》教程目录-CSDN博客每天40分玩转Django教程目录-CSDN博客Pycharm社区版搭建Django环境及Django简单项目、操控mysql数据库-CSDN博客这个开源有关于事务方面高级内容介绍:django-vue-lyadmin:django-vue-lyadmin前端采用vue3+elementplus,后端采用PythonDjangoDRF
- [笔记] 如何在win上安装fbprophet库(Anaconda-Spyder)
WangMH_CHN
笔记
fbprophet库是Google开发的一个用于时间序列分析的库,该库的运行需要用到C++编译,因此最开始使用python安装的时候会出现很多问题。本文总结了整个安装过程,记录在此。 首先,先阐述初始配置情况:我习惯使用在Anaconda上使用Spyder来写代码,win10系统,系统基础的环境是python3.11。 但是fbprophet只支持py2.7、3.5~3.8,因此需要配置一
- python文件:py,ipynb, pyi, pyc, pyd, pyo都是什么文件?
m 哆哆.ღ
pythonpython开发语言
python:py,ipynb,pyi,pyc,pyd,pyo都是什么文件?1python文件类型介绍1.1.py文件:源代码.py文件是Python最基本的源代码文件格式,用于存储纯文本形式的Python代码。它是开发者编写程序的主要场所,包含函数、类、变量定义以及执行逻辑。Python解释器直接读取并执行.py文件中的指令。例如,创建一个简单的hello.py文件,内容如下:print("He
- 【Python进阶】Python中的电子邮件处理:SMTP、IMAP和MIME
m 哆哆.ღ
pythonpython服务器网络
1、电子邮件概述1.1电子邮件的工作原理1.1.1邮件服务器与客户端电子邮件的运作基于客户端-服务器架构,用户通常通过邮件客户端软件(如Outlook、Thunderbird等)或者网页版邮件服务(如Gmail、YahooMail等)撰写、发送和接收邮件。邮件客户端负责与邮件服务器进行通信,邮件服务器则承担着存储、转发和管理邮件的任务。当用户编写一封电子邮件后,邮件首先被客户端软件打包并通过SMT
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR