含多类型充电桩的电动汽车充电站优化配置方法(matlab代码)

目录

1 主要内容

目标函数

约束条件

程序亮点

2 部分代码

3 程序结果

4 下载链接


主要内容

该程序复现博士文章《互动环境下分布式电源与电动汽车充电站的优化配置方法研究》第三章《含多类型充电桩的电动汽车充电站优化配置方法》,本章选择3种典型的电动汽车充电桩,研究了含多类型充电桩的电 动汽车充电站优化配置方法。按照充电功率的升序排列,所选取的3种电动汽车充电桩 依次代表了慢速充电设施(Slow charging facility,SCF)、快速充电设施(Fast charging facility,FCF)和超级快速充电设施(Ultra-fast charging facility,UCF)。为了处理由多 类型充电桩间相互影响导致的条件场景约束,同时降低电动汽车充电站优化配置模型的 复杂度,本章提出了针对条件场景约束的二步等价方法,并应用二阶锥松弛技术将混合 整数非线性规划问题转化为混合整数二阶锥规划问题。为了检验上述模型与方法的有效 性,本章采用江苏地区一个实际的电气-地理信息耦合系统作为算例,通过对比不同电 动汽车充电站优化配置方案的年化社会总成本,证明了在优化配置问题中同时考虑多种 类型充电桩的意义与价值。 

  • 目标函数

  • 约束条件

  1. 系统潮流约束
  2. 电压幅值约束
  3. 支路电流约束
  4. 二阶锥约束
  5. 电动汽车负荷调度中的数量平衡约束
  6. 充电区域选择范围限制
  7. 充电桩数量约束
  • 程序亮点

该程序巧妙的将不同类型电动汽车充电站和文中30节点网络优化结合起来,采用二阶锥模型,程序采用整型变量的方式表达备选节点不同类型充电桩数量,同时结合四季和工作日/周末特点,很值得参考学习!

部分代码

T = 96;%时段数为1小时
nb = 31;%节点数,根节点为33
nl = 30;%支路数
P1=1e-5.*[500 200 250 180 180 120 240 240 240 240 240 160 160 400 320 300 300 300 300 800 0 80 200 100 60 40 500 200 80 30 0]';
Q1=1e-5.*[300 90 160 90 60 60 80 80 80 120 120 90 100 75 100 125 100 100 100 320 0 40 100 40 25 15 160 120 30 10 0]';
addpath('数据出力');
load pc_jm_w;
load pc_jm_wd;
load px_jm_w;
load px_jm_wd;
load pq_jm_w;
load pq_jm_wd;
load pd_jm_w;
load pd_jm_wd;
load pc_sc_w;
load pc_sc_wd;
load px_sc_w;
load px_sc_wd;
load pq_sc_w;
load pq_sc_wd;
load pd_sc_w;
load pd_sc_wd;
load pc_bg_w;
load pc_bg_wd;
load px_bg_w;
load px_bg_wd;
load pq_bg_w;
load pq_bg_wd;
load pd_bg_w;
load pd_bg_wd;
%电动汽车
prl=100;%容量
cdz=[7 30 60;400 3250 5600;40 325 560;10 10 10];%充电桩数据
cr=106.5;%单位容量增容成本
cl=80;%单位网损费用
plmax=600*1e-4;%线路最大电流
d=0.03;%折现率
num_peak=[1 2 5 1.*ones(1,28)];%测试数据,下为正式数据,运行速度太慢
%num_peak=[30 12 15 11 11 7 14 14 14 14 14 10 10 24 19 18 18 18 18 48 0 5 12 6 4 2 30 12 5 2 0]';%峰值电动汽车停车数量
load arr_jm_w;
load arr_jm_wd;
load arr_sc_w;
load arr_sc_wd;
load arr_bg_w;
load arr_bg_wd;
load stay_jm_w;
load stay_jm_wd;
load stay_sc_w;
load stay_sc_wd;
load stay_bg_w;
load stay_bg_wd;
sty_jd=[2 2 1 3 3 2 1 1 1 1 1 1 1 2 2 2 2 1 1 2 1 3 2 2 3 3 3 1 2 3 1];%节点区域类型
%构建负荷矩阵
for i=1:nb
   if sty_jd(i)==1
       pload(i,1:T)=P1(i).*pc_jm_w;%春 工作日
       pload(i,T+1:2*T)=P1(i).*pc_jm_wd;%春 周末
       pload(i,2*T+1:3*T)=P1(i).*px_jm_w;%夏 工作日
       pload(i,3*T+1:4*T)=P1(i).*px_jm_wd;%夏 周末
       pload(i,4*T+1:5*T)=P1(i).*pq_jm_w;%秋 工作日
       pload(i,5*T+1:6*T)=P1(i).*pq_jm_wd;%秋 周末
       pload(i,6*T+1:7*T)=P1(i).*pd_jm_w;%冬 工作日
       pload(i,7*T+1:8*T)=P1(i).*pd_jm_wd;%冬 周末
   elseif sty_jd(i)==2
       pload(i,1:T)=P1(i).*pc_sc_w;%春 工作日
       pload(i,T+1:2*T)=P1(i).*pc_sc_wd;%春 周末
       pload(i,2*T+1:3*T)=P1(i).*px_sc_w;%夏 工作日
       pload(i,3*T+1:4*T)=P1(i).*px_sc_wd;%夏 周末
       pload(i,4*T+1:5*T)=P1(i).*pq_sc_w;%秋 工作日
       pload(i,5*T+1:6*T)=P1(i).*pq_sc_wd;%秋 周末
       pload(i,6*T+1:7*T)=P1(i).*pd_sc_w;%冬 工作日
       pload(i,7*T+1:8*T)=P1(i).*pd_sc_wd;%冬 周末
   else
       pload(i,1:T)=P1(i).*pc_bg_w;%春 工作日
       pload(i,T+1:2*T)=P1(i).*pc_bg_wd;%春 周末
       pload(i,2*T+1:3*T)=P1(i).*px_bg_w;%夏 工作日
       pload(i,3*T+1:4*T)=P1(i).*px_bg_wd;%夏 周末
       pload(i,4*T+1:5*T)=P1(i).*pq_bg_w;%秋 工作日
       pload(i,5*T+1:6*T)=P1(i).*pq_bg_wd;%秋 周末
       pload(i,6*T+1:7*T)=P1(i).*pd_bg_w;%冬 工作日
       pload(i,7*T+1:8*T)=P1(i).*pd_bg_wd;%冬 周末
   end
end
qload=repmat(Q1,1,8*T);
num_w=[];num_wd=[];
for i=1:31%分别计算工作日和周末时序停车数量
    if sty_jd(i)==1
    num_w(i,:)=round(num_peak(i).*arr_jm_w./max(arr_jm_w));
    num_wd(i,:)=round(num_peak(i).*arr_jm_wd./max(arr_jm_wd));
    %停车时长分布,样本数量不足,没法用停车时长概率曲线来计算,随机产生停车时长
    elseif sty_jd(i)==2
    num_w(i,:)=round(num_peak(i).*arr_sc_w./max(arr_sc_w));
    num_wd(i,:)=round(num_peak(i).*arr_sc_wd./max(arr_sc_wd));
    else
    num_w(i,:)=round(num_peak(i).*arr_bg_w./max(arr_bg_w));
    num_wd(i,:)=round(num_peak(i).*arr_bg_wd./max(arr_bg_wd));
    end
end
%建立节点电动汽车矩阵
sum_num_w=sum(num_w);
sum_num_wd=sum(num_wd);
max_num=max(sum_num_w,sum_num_wd);
% k=1;
% for t=1:T
%     k1=1;
%     for i=1:nb
%         if stay_time_w(i,t)~=0%计算每个电动汽车的充电时长
%             for y=1:stay_time_w(i,t)
%                 st(k1,t)=t*0.25;
%             end
%             k1=k1+1;
%         end
%     end
% end
k=1;
for t=1:T
    for i=1:nb
    if num_w(i,t)~=0
       for jj=1:num_w(i,t)
           soc=rand;
           st(k)=round(1+95*rand)*0.25;%充电时长
            if st(k)*cdz(1,1)>=prl*(1-soc)
        evjd_w(k,:)=[t,i,soc,0,st(k),1,sty_jd(i)];%时间,节点,soc,充电节点,充电时长,充电桩选择,节点区域类型
            elseif st(k)*cdz(1,1)<=prl*(1-soc) && prl*(1-soc)<=st(k)*cdz(1,2)
        evjd_w(k,:)=[t,i,soc,0,st(k),2,sty_jd(i)];%时间,节点,soc,充电节点,充电时长,充电桩选择,节点区域类型 
            else
        evjd_w(k,:)=[t,i,soc,0,st(k),3,sty_jd(i)];%时间,节点,soc,充电节点,充电时长,充电桩选择,节点区域类型  
            end
%             if gdch(i)~=0
%                 evjd_w(k,4)=gdch(i);
%             end
        k=k+1;
        end
    end
    end
end
%周末情况
 k=1;
for t=1:T
    for i=1:nb
    if num_w(i,t)~=0
       for jj=1:num_w(i,t)
           soc=rand;
           st(k)=round(1+95*rand)*0.25;%充电时长
            if st(k)*cdz(1,1)>=prl*(1-soc)
        evjd_wd(k,:)=[t,i,soc,0,st(k),1,sty_jd(i)];%时间,节点,soc,充电节点,充电时长,充电桩选择,节点区域类型
            elseif st(k)*cdz(1,1)<=prl*(1-soc) && prl*(1-soc)<=st(k)*cdz(1,2)
        evjd_wd(k,:)=[t,i,soc,0,st(k),2,sty_jd(i)];%时间,节点,soc,充电节点,充电时长,充电桩选择,节点区域类型 
            else
        evjd_wd(k,:)=[t,i,soc,0,st(k),3,sty_jd(i)];%时间,节点,soc,充电节点,充电时长,充电桩选择,节点区域类型  
            end
%             if gdch(i)~=0
%                 evjd_wd(k,4)=gdch(i);
%             end
        k=k+1;
        end
    end
    end
end

程序结果

部分原文结果

4 下载链接

 点击直达

你可能感兴趣的:(电动汽车,多场景,充电站,matlab,二阶锥)