事务是一种机制、一个操作序列,包含了一组数据库操作命令(增删改),并且把所有的命令作为一个整体一起向系统提交或撤销操作请求,即这一组数据库命令要么都执行,要么都不执行。
事务是一个不可分割的工作逻辑单元,在数据库系统上执行并发操作时,事务是最小的控制单元。事务是通过事务的整体性以保证数据的一致性。事务能够提高在向表中更新和插入信息期间的可靠性。
事务适用于多用户同时操作的数据库系统的场景,如银行、保险公司及证券交易系统等等。
总的来说所谓事务,它是一个操作序列,这些操作(增删改)要么都执行,要么都不执行,它是一个不可分割的工作单位。
ACID,是指在可靠数据库管理系统(DBMS)中,事务(transaction)应该具有的四个特性:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)。这是可靠数据库所应具备的几个特性。
指事务是一个不可再分割的工作单位,事务中的操作要么都发生,要么都不发生。
事务是一个完整的操作,事务的各元素是不可分的。事务中的所有元素必须作为一个整体提交或回滚。如果事务中的任何元素失败,则整个事务将失败。
指在事务开始之前和事务结束以后,数据库的完整性约束没有被破坏。
当事务完成时,数据必须处于一致状态。在事务开始前,数据库中存储的数据处于一致状态。在正在进行的事务中,数据可能处于不一致的状态。当事务成功完成时,数据必须再次回到已知的一致状态。
指在并发环境中,当不同的事务同时操纵相同的数据时,每个事务都有各自的完整数据空间。
对数据进行修改的所有并发事务是彼此隔离的,表明事务必须是独立的,它不应以任何方式依赖于或影响其他事务。修改数据的事务可在另一个使用相同数据的事务开始之前访问这些数据,或者在另一个使用相同数据的事务结束之后访问这些数据。
也就说并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的。
在事务完成以后,该事务所对数据库所作的更改便持久的保存在数据库之中,并不会被回滚。
指不管系统是否发生故障,事务处理的结果都是永久的。一旦事务被提交,事务的效果会被永久地保留在数据库中。
在多个事务并发操作同意给表数据时,不同的隔离级别可能会出现的一致性问题:
脏读
:一个事务读取了另一个事务未提交的数据,而这个数据是有可能回滚的。不可重复读
:一个事务内两个相同的查询却返回了不同数据。这是由于查询时系统中其他事务修改的提交而引起的。幻读
:在一个事务里的两次查询会看到数据不一致的情况(可能是发现之前没有的数据),这种情况可能因为两次查询过程中间有其它事务插入了新的数据并己提交。丢失更新
:一个事务修改数据并提交可能会覆盖另一个事务修改和提交的数据。隔离级别
级别 | 含义 | 脏读取 | 不可重复读 | 幻像读 |
---|---|---|---|---|
未提交读:Read Uncommitted (RU) |
允许脏读,即允许一个事务可以看到其他事务未提交的修改。 | 允许 | 允许 | 允许 |
提交读:Read Committed(RC) |
允许一个事务只能看到其他事务已经提交的修改,未提交的修改是不可见的。 | 不允许 | 允许 | 允许 |
可重复读:Repeatable Read(RR) |
mysql默认的隔离级别,确保如果在一个事务中执行两次相同的SELECT语句,都能得到相同的结果,不管其他事务是否提交这些修改 | 不允许 | 不允许 | 对 InnoDB 不允许,对有条件的允许 |
串行读:Serializable |
完全串行化的读,将一个事务与其他事务完全地隔凶。每次读都需要获得表级共享锁,读写相互都会阻案。会降低数据库的效率。 | 不允许 | 不允许 | 不允许 |
总结:在事务管理中,原子性是基础,隔离性是手段,一致性是目的,持久性是结果。
mysql默认的事务处理级别是 repeatable read ,而Oracle和SQL Server是 read committed 。
事务的隔离级别的作用范围分为两种:
查询全局事务隔离级别:
show global variables like ‘%查询内容%’;
或者
select @@global.tx_查询内容;
查询会话事务隔离级别:
show session variables like ‘%isolation%’;
select @@session.tx_isolation;
select @@tx_isolation;
设置全局事务隔离级别:
set global transaction isolation level read committed;
set @@global.tx_isolation=‘repeatable-read’;
临时修改,重启服务后失效
设置会话事务隔离级别:
set session transaction isolation level repeatable read;
set @@session.tx_isotio=‘repeatable-read’;
事务控制语句:
BEGIN 或 START TRANSACTION:显式地开启一个事务。
COMMIT 或 COMMIT WORK:提交事务,并使已对数据库进行的所有修改变为永久性的。
ROLLBACK 或 ROLLBACK WORK:回滚会结束用户的事务,并撤销正在进行的所有未提交的修改。
SAVEPOINT S1:使用 SAVEPOINT 允许在事务中创建一个回滚点,一个事务中可以有多个 SAVEPOINT;“S1”代表回滚点名称。
ROLLBACK TO [SAVEPOINT] S1:把事务回滚到标记点。
举例:
使用begin开始事务,然后撤销事务回到原点
使用begin开始事务,建立回滚点,然后回到某个回滚点(可以设置多点回滚)
保存事务
使用set设置控制事务
一般情况下,我们之所以不使用begin直接就能保存事务,是因为默认设置就是自动提交事务,我们可以使用set设置来修改操作:
使用命令先查看状态:
show variables like ‘autocommit’;
SET AUTOCOMMIT=0; #禁止自动提交
SET AUTOCOMMIT=1; #开启自动提交,Mysql默认为1
SHOW VARIABLES LIKE ‘AUTOCOMMIT’; #查看Mysql中的AUTOCOMMIT值
如果没有开启自动提交,当前会话连接的mysql的所有操作都会当成一个事务直到你输入rollback|commit;当前事务才算结束。当前事务结束前新的mysql连接时无法读取到任何当前会话的操作结果。
如果开起了自动提交,mysql会把每个sql语句当成一个事务,然后自动的commit。
当然无论开启与否,begin; commit|rollback; 都是独立的事务。
MyISAM 表支持 3 种不同的存储格式:
(1)静态(固定长度)表
静态表是默认的存储格式。静态表中的字段都是非可变字段,这样每个记录都是固定长度的,这种存储方式的优点是存储非常迅速,容易缓存,出现故障容易恢复;缺点是占用的空间通常比动态表多。
(2)动态表
动态表包含可变字段,记录不是固定长度的,这样存储的优点是占用空间较少,但是频繁的更新、删除记录会产生碎片,需要定期执行 OPTIMIZE TABLE 语句或 myisamchk -r 命令来改善性能,并且出现故障的时候恢复相对比较困难。
(3)压缩表
压缩表由 myisamchk 工具创建,占据非常小的空间,因为每条记录都是被单独压缩的,所以只有非常小的访问开支。
常用存储引擎:InnoDB、MyISAM
MyISAM:不支持事务和外键约束,占用资源较小,访问速度快,表级锁定,支持全文索引,适用于不需要事务处理,单独写入或查询的应用场景。
InnoDB:支持事务处理、外键约束,缓存能力较好,支持行级锁定,读写并发能力较好,5.5版本后支持全文索引,适用于一致性要求高、数据更新频繁的应用场景。
查看系统支持的存储引擎:
show engines;
查看表使用的存储引擎:
方法一:
show table status from 库名 where name=‘表名’\G;
方法二:
show create table a01;
修改存储引擎:
通过修改/etc/my.cnf配置文件,指定默认存储引擎并重启服务
修改完需要重启服务才可以
注意:此方法只对修改了配置文件并重启mysql服务后新创建的表有效,已经存在的表不会有变更。
通过create table 创建表的时指定存储引擎
create table 表名(字段1 数据类型,…) engine=存储引擎名;
死锁一般是事务相互等待对方资源,最后形成环路造成的。
所谓死锁:是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。由于资源占用是互斥的,当某个进程提出申请资源后,使得有关进程在无外力协助下,永远分配不到必需的资源而无法继续运行,这就产生了一种特殊现象死锁。 一种情形,此时执行程序中两个或多个线程发生永久堵塞(等待),每个线程都在等待被其他线程占用并堵塞了的资源。例如,如果线程A锁住了记录1并等待记录2,而线程B锁住了记录2并等待记录1,这样两个线程就发生了死锁现象。计算机系统中,如果系统的资源分配策略不当,更常见的可能是程序员写的程序有错误等,则会导致进程因竞争资源不当而产生死锁的现象。锁有多种实现方式,比如意向锁,共享-排他锁,锁表,树形协议,时间戳协议等等。锁还有多种粒度,比如可以在表上加锁,也可以在记录上加锁。
产生死锁的原因主要是:
(1)系统资源不足。
(2) 进程运行推进的顺序不合适。
(3)资源分配不当等。
如果系统资源充足,进程的资源请求都能够得到满足,死锁出现的可能性就很低,否则就会因争夺有限的资源而陷入死锁。其次,进程运行推进顺序与速度不同,也可能产生死锁。
产生死锁的四个必要条件:
(1) 互斥条件:一个资源每次只能被一个进程使用。
(2) 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
(3) 不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。
(4) 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
这四个条件是死锁的必要条件,只要系统发生死锁,这些条件必然成立,而只要上述条件之一不满足,就不会发生死锁。
如何尽可能避免死锁?
1)以固定的顺序访问表和行。
2)大事务拆小。大事务更倾向于死锁,如果业务允许,将大事务拆小。
3)在同一个事务中,尽可能做到一次锁定所需要的所有资源,减少死锁概率。
4)降低隔离级别。如果业务允许,将隔离级别调低也是较好的选择,比如将隔离级别从RR调整为RC,可以避免掉很多因为gap锁造成的死锁。
5)为表添加合理的索引。如果不使用索引将会为表的每一行记录添加上锁,死锁的概率大大增大。
当我们使用悲观锁的时候我们首先必须关闭mysql数据库的自动提交属性,因为MySQL默认使用autocommit模式,也就是说,当你执行一个更新操作后,MySQL会立刻将结果进行提交。
关闭命令为:set autocommit=0;
悲观锁可以使用select…for update实现,在执行的时候会锁定数据,虽然会锁定数据,但是不影响其他事务的普通查询使用。此处说普通查询就是平时我们用的:select * from table 语句。在我们使用悲观锁的时候事务中的语句例如:
//开始事务
begin;/begin work;/start transaction; (三选一)
//查询信息
select * from order where id=1 for update;
//修改信息
update order set name=’names’;
//提交事务
commit;/commit work;(二选一)
此处的查询语句for update关键字,在事务中只有SELECT … FOR UPDATE 或LOCK IN SHARE MODE 同一条数据时会等待其它事务结束后才执行,一般的SELECT查询则不受影响。
执行事务时关键字select…for update会锁定数据,防止其他事务更改数据。但是锁定数据也是有规则的。
查询条件与锁定范围:
1、具体的主键值为查询条件
比如查询条件为主键ID=1等等,如果此条数据存在,则锁定当前行数据,如果不存在,则不锁定。
2、不具体的主键值为查询条件
比如查询条件为主键ID>1等等,此时会锁定整张数据表。
3、查询条件中无主键
会锁定整张数据表。
4、如果查询条件中使用了索引为查询条件
明确指定索引并且查到,则锁定整条数据。如果找不到指定索引数据,则不加锁。
悲观锁的确保了数据的安全性,在数据被操作的时候锁定数据不被访问,但是这样会带来很大的性能问题。因此悲观锁在实际开发中使用是相对比较少的。
相对悲观锁而言,乐观锁假设数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会对数据的冲突与否进行检测,如果发现冲突,则让返回用户错误的信息,让用户决定如何去做。
一般来说,实现乐观锁的方法是在数据表中增加一个version字段,每当数据更新的时候这个字段执行加1操作。这样当数据更改的时候,另外一个事务访问此条数据进行更改的话就会操作失败,从而避免了并发操作错误。当然,还可以将version字段改为时间戳,不过原理都是一样的。
例如有表student,字段:
id,name,version
1 a 1
当事务一进行更新操作:update student set name=’ygz’ where id = #{id} and version = #{version};
此时操作完后数据会变为id = 1,name = ygz,version = 2,当另外一个事务二同样执行更新操作的时候,却发现version != 1,此时事务二就会操作失败,从而保证了数据的正确性。
悲观锁和乐观锁都是要根据具体业务来选择使用,本文仅作简单介绍。
悲观锁会锁定数据,其他操作不会影响到被锁的数据,但是普通的查询没有影响,需要用到 for update语句
实现乐观锁的方法是在数据表中增加一个version字段,每当数据更新的时候这个字段执行加1操作。这样当数据更改的时候,另外一个事务访问此条数据进行更改的话就会操作失败,从而避免了并发操作错误。