Block本质
- block本质是一个OC对象,它内部也有个isa指针
- block是封装了函数调用以及函数调用环境的OC对象
- 将以下代码编译为C++源码
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m
void (^block)(void);
void test()
{
int age = 10;
static int height = 10;
block = ^{
NSLog(@"age is %d, height is %d", age, height);
};
age = 20;
height = 20;
}
int main(int argc, const char * argv[]) {
@autoreleasepool {
test();
block();
}
}
- clang编译之后的C++代码
struct __block_impl {
void *isa;
int Flags;
int Reserved;
// 指向方法入口地址
void *FuncPtr;
};
// block对象
struct __test_block_impl_0 {
struct __block_impl impl;
struct __test_block_desc_0* Desc;
int age;
int *height;
__test_block_impl_0(void *fp, struct __test_block_desc_0 *desc, int _age, int *_height, int flags=0) : age(_age), height(_height) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
// test函数中,block的函数体,执行的具体方法
static void __test_block_func_0(struct __test_block_impl_0 *__cself) {
int age = __cself->age; // bound by copy
int *height = __cself->height; // bound by copy
NSLog((NSString *)&__NSConstantStringImpl__var_folders_fc_j144208d3nl9m4ql0ryqmghh0000gn_T_main_0d86ab_mi_0, age, (*height));
}
// test函数中,block的描述信息
static struct __test_block_desc_0 {
size_t reserved;
size_t Block_size;
} __test_block_desc_0_DATA = { 0, sizeof(struct __test_block_impl_0)};
void test()
{
int age = 10;
static int height = 10;
block = ((void (*)())&__test_block_impl_0((void *)__test_block_func_0, &__test_block_desc_0_DATA, age, &height)); // __test_block_impl_0
age = 20;
height = 20;
}
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
test();
// block->FuncPtr(block); 为什么不是block->impl.FuncPtr,因为block对象首地址就是impl的地址
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
}
return 0;
}
- 综上代码可以看出Block的C++布局:
- void *isa;
- int Flags;
- int Reserved;
- void *FuncPtr; 指向block的函数体
- struct __test_block_desc_0* Desc;(指向的内存信息包括
size_t reserved
,size_t Block_size
) - 捕获变量
block的变量捕获
- 从以上
void test()
函数看出
__test_block_impl_0(void *fp, struct __test_block_desc_0 *desc, int _age, int *_height, int flags=0) : age(_age), height(_height) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
- 局部变量auto变量捕获到block,是通过值传递方式,给block对象
- 局部变量static变量捕获到block内部,传递是一个指针,一个地址
- 全部变量不会不会到block内部,直接访问
block的类型
- block有三种类型,可以通过调用
class
方法或者isa指针查看具体类型,最终都是继承自NSBlock
类型- NSGlobalBlock ( _NSConcreteGlobalBlock ),环境:没有访问auto变量
- NSStackBlock ( _NSConcreteStackBlock ),环境:访问了auto变量
- NSMallocBlock ( _NSConcreteMallocBlock ),环境: NSStackBlock 调用了Copy
NSLog(@"%@", [block class]); // __NSGlobalBlock__
NSLog(@"%@", [[block class] superclass]); // NSBlock
NSLog(@"%@", [[[block class] superclass] superclass]); // NSObject
NSLog(@"%@", [[[[block class] superclass] superclass] superclass]); // null
int a = 10;
// 堆:动态分配内存,需要程序员申请申请,也需要程序员自己管理内存
void (^block1)(void) = ^{
NSLog(@"Hello");
};
int age = 10;
void (^block2)(void) = ^{
NSLog(@"Hello - %d", age);
};
NSLog(@"%@ % @ %@", [block1 class], [block2 copy], [^{
NSLog(@"%d", age);
} class]); // __NSGlobalBlock__ __NSMallocBlock__ __NSStackBlock__
// Global:没有访问auto变量 - 数据段
void (^block1)(void) = ^{
NSLog(@"block1---------");
};
// Stack:访问了auto变量 - 栈s
int age = 10;
void (^block2)(void) = ^{
NSLog(@"block2---------%d", age);
};
// Malloc block
NSLog(@"%p", [block2 copy]);
// NSStackBlock - 堆:内存管理由h程序员销毁管理
int age = 10;
block = ^{
NSLog(@"block---------%d", age);
};
// 在test2外部执行block,此时的输出 272632984,为什么不是10,因为test2执行完毕block对应的c++对象在栈上的内存被回收
// 要想输出结果为仍然为10,可以调用copy方法,将block对象的内存从栈复制到堆上,堆上的内存由程序员手动管理
block的copy
- 在ARC环境下,编译器会根据情况自动将粘上的block复制到堆上:
- block作为函数返回值时
- 将block赋值给__strong指针时
- block作为Cocoa API中方法名含有
usingBlock
的方法参数 - block作为GCD API的方法参数时
- ARC下block属性的建议写法
@property (copy, nonatomic) void (^block)(void);
- 以下代码,bock访问了 auto变量,类型为StackBlock,在栈上, 但是输出的结果却是 NSMallocBlock,原因是在ARC环境下,编译器会把block对象拷贝到堆上,相当于自动调用了copy方法,如果是MRC的环境,输出的类型是NSStackBlock
int age = 10; MJBlock block = ^{ NSLog(@"---------%d", age); }; NSLog(@"%@", [block class]); // ARC:__NSMallocBlock__, MRC: __NSStackBlock__
block访问了对象类型的auto变量
-
当block内部访问了对象类型的auto变量时
- 如果block在栈上,将不会对auto变量产生强引用
MJBlock block; { MJPerson *person = [[MJPerson alloc] init]; person.age = 10; int age = 10; block = ^{ NSLog(@"---------%d --%d", person.age, age); }; [person release]; //MRC person 将会在该作用域结束后释放, block的类型为__NSStackBlock__ } NSLog(@"------: %@", [block class]); // __NSStackBlock__
- 如果block被拷贝堆上
- 会调用block内部的copy函数
- copy函数内部会调用
_Block_object_assign
函数 -
_Block_object_assign
函数会根据auto变量修辞符(__strong
、__weak
、__unsafe_unretained
)做出相应的操作,形成强引用或者弱引用
MJBlock block; { MJPerson *person = [[MJPerson alloc] init]; person.age = 10; int age = 10; block = ^{ NSLog(@"---------%d --%d", person.age, age); }; } NSLog(@"------: %@", [block class]); // __NSMallocBlock__
- 将上述代码编译为C++代码
struct __main_block_impl_0 { struct __block_impl impl; struct __main_block_desc_0* Desc; MJPerson *person; int age; __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, MJPerson *_person, int _age, int flags=0) : person(_person), age(_age) { impl.isa = &_NSConcreteStackBlock; impl.Flags = flags; impl.FuncPtr = fp; Desc = desc; } }; static void __main_block_func_0(struct __main_block_impl_0 *__cself) { MJPerson *person = __cself->person; // bound by copy int age = __cself->age; // bound by copy NSLog((NSString *)&__NSConstantStringImpl__var_folders_fc_j144208d3nl9m4ql0ryqmghh0000gn_T_main_8479c1_mi_0, ((int (*)(id, SEL))(void *)objc_msgSend)((id)person, sel_registerName("age")), age); } static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) { _Block_object_assign((void*)&dst->person, (void*)src->person, 3); } static void __main_block_dispose_0(struct __main_block_impl_0*src) { _Block_object_dispose((void*)src->person, 3); } // 创建一个结构体,并声明初始化变量__main_block_desc_0_DATA static struct __main_block_desc_0 { size_t reserved; size_t Block_size; void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*); void (*dispose)(struct __main_block_impl_0*); } __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0}; int main(int argc, const char * argv[]) { { __AtAutoreleasePool __autoreleasepool; MJBlock block; { MJPerson *person = ((MJPerson *(*)(id, SEL))(void *)objc_msgSend)((id)((MJPerson *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("MJPerson"), sel_registerName("alloc")), sel_registerName("init")); ((void (*)(id, SEL, int))(void *)objc_msgSend)((id)person, sel_registerName("setAge:"), 10); int age = 10; block = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, person, age, 570425344)); } NSLog((NSString *)&__NSConstantStringImpl__var_folders_fc_j144208d3nl9m4ql0ryqmghh0000gn_T_main_8479c1_mi_1, ((Class (*)(id, SEL))(void *)objc_msgSend)((id)block, sel_registerName("class"))); } return 0; }
- 如果block从堆上移除
- 会调用block内部的dispose函数
- dispose函数内部会调用_Block_object_dispose函数
- _Block_object_dispose函数会自动释放引用的auto变量
static void __main_block_dispose_0(struct __main_block_impl_0*src) { _Block_object_dispose((void*)src->person, 3); }
OC为C++代码时,__weak问题解决
- 在使用clang转换OC为C++代码时,可能会遇到以下问题
- cannot create __weak reference in file using manual reference
- 解决方案:支持ARC、指定运行时系统版本,比如
- xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc -fobjc-arc -fobjc-runtime=ios-8.0.0 main.m
__block修饰符
-
__block
可以用于 解决block内部无法修改auto变量值的问题 -
__block
不能修饰全局变量,静态变量(static) - 编译器会将__block变量包装成一个对象
int main(int argc, const char * argv[]) {
@autoreleasepool {
int no = 20;
/**
对__block对象直接产生强引用
对非__block对象产生的引用取决于它的修饰符 __weak产生弱引用, __strong产生强引用
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int no;
NSObject *__weak weakObject;
__Block_byref_age_0 *age; // by ref
}
*/
__block int age = 10;
NSObject *object = [[NSObject alloc] init];
__weak NSObject *weakObject = object;
MJBlock block = ^{
age = 20;
NSLog(@"%d", no);
NSLog(@"%d", age);
NSLog(@"%p", weakObject);
};
struct __main_block_impl_0* blockImpl = (__bridge struct __main_block_impl_0*)block;
block();
}
return 0;
}
typedef void (*MJBlock) (void);
struct __Block_byref_age_0 {
void *__isa;
__Block_byref_age_0 *__forwarding;
int __flags;
int __size;
int age;
};
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int no;
NSObject *__weak weakObject;
__Block_byref_age_0 *age; // by ref
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _no, NSObject *__weak _weakObject, __Block_byref_age_0 *_age, int flags=0) : no(_no), weakObject(_weakObject), age(_age->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
__Block_byref_age_0 *age = __cself->age; // bound by ref
int no = __cself->no; // bound by copy
NSObject *__weak weakObject = __cself->weakObject; // bound by copy
/// age->__forwarding->age这么做的原因是为了让age始终被正确访问,block会被拷贝到堆上
(age->__forwarding->age) = 20;
}
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {
_Block_object_assign((void*)&dst->age, (void*)src->age, 8/*BLOCK_FIELD_IS_BYREF*/);
_Block_object_assign((void*)&dst->weakObject, (void*)src->weakObject, 3/*BLOCK_FIELD_IS_OBJECT*/);
}
static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->age, 8/*BLOCK_FIELD_IS_BYREF*/);_Block_object_dispose((void*)src->weakObject, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
int no = 20;
__attribute__((__blocks__(byref))) __Block_byref_age_0 age = {(void*)0,(__Block_byref_age_0 *)&age, 0, sizeof(__Block_byref_age_0), 10};
NSObject *object = ((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("alloc")), sel_registerName("init"));
__attribute__((objc_ownership(weak))) NSObject *weakObject = object;
MJBlock block = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, no, weakObject, (__Block_byref_age_0 *)&age, 570425344));
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
}
return 0;
}
- 可以看到在block中访问了 __block 修辞的age的变量,age在block对象中被包装 成了
__Block_byref_age_0
类的指针,指向__Block_byref_age_0对象的第一个元素的地址__isa,从__Block_byref_age_0这个类结构可以看出,里面的__forwarding指针,指向该类,可以通过该指针访问age
变量
- __blokc修辞的auto变量(基础数据类型)的内存管理
- 当block在栈上时,并不会对__block变量产生强引用, 在ARC环境下,编译器会将__NSStackBlock类型的block自动执行一次copy操作到堆上
- 当block被copy到堆上时
- 回调用block内部的copy函数
-
copy
函数内部会调用_Block_object_assign函数
-_Block_object_assig
函数会对__block变量形成强引用(retain) -
对非__block对象产生的引用取决于它的修饰符 __weak产生弱引用, __strong产生强引用
- 当block从堆中移除时
- 会调用block内部的dispose函数
- dispose函数会调用
_Block_object_dispose
函数 -
_Block_object_dispose
函数会自动释放引用的_blcok变量
__block的__forwarding指针
struct __Block_byref_age_0 {
void *__isa; // 8
__Block_byref_age_0 *__forwarding; // 8
int __flags; // 4
int __size; // 4
int age; // 0x000000010300da68
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
__Block_byref_age_0 *age = __cself->age; // bound by ref
int no = __cself->no; // bound by copy
NSObject *__weak weakObject = __cself->weakObject; // bound by copy
/// age->__forwarding->age这么做的原因是为了让age始终被正确访问,block会被拷贝到堆上
(age->__forwarding->age) = 20;
}
- __forwarding指针指向的是自身的地址
- 当block对象被复制到堆上时,__forwarding指针对上的结构体
-
采用这种方式就能保证始终访问到正确位置的变量的age
对象类型的auto变量,__block变量内存管理的总结
- 当block在栈上时,对它们都不会产生强引用
- 当block拷贝堆上时,都会通过copy函数来处理它们
- __block变量(假设变量名叫做a)
_Block_object_assign((void*)&dst->a, (void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);
- 对象类型的auto变量
_Block_object_assign((void*)&dst->person, (void*)src->person, 3/*BLOCK_FIELD_IS_OBJECT*/);
- __block变量(假设变量名叫做a)
- 当block从堆上移除时,都会通过dispose函数来释放它们
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {
_Block_object_assign((void*)&dst->person, (void*)src->person, 3/*BLOCK_FIELD_IS_OBJECT*/);
_Block_object_assign((void*)&dst->a, (void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);
}
static void __main_block_dispose_0(struct __main_block_impl_0*src) {
_Block_object_dispose((void*)src->person, 3/*BLOCK_FIELD_IS_OBJECT*/);
_Block_object_dispose((void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);
}
被被__block修饰的对象类型的内存管理情况
- 当__block变量在栈上时,不会对指向的对象产生强引用
- 当__block变量被copy到堆时
- 会调用__block变量内部的copy函数
- copy函数内部会调用_Block_object_assign函数
- _Block_object_assign函数会根据所指向对象的修饰符(__strong、__weak、__unsafe_unretained)做出相应的操作,形成强引用(retain)或者弱引用(注意:这里仅限于ARC时会retain,MRC时不会retain)
- 如果__block变量从堆上移除
- 会调用__block变量内部的dispose函数
- dispose函数内部会调用_Block_object_dispose函数
- _Block_object_dispose函数会自动释放指向的对象(release)
int main(int argc, const char * argv[]) { @autoreleasepool { MJPerson *person = [[MJPerson alloc] init]; __strong MJPerson *strogPerson = person; __weak MJPerson *weakPerson = person; MJBlock block = ^{ NSLog(@"%p - %p", strogPerson, weakPerson); }; block(); } return 0; } struct __main_block_impl_0 { struct __block_impl impl; struct __main_block_desc_0* Desc; MJPerson *__strong strogPerson; MJPerson *__weak weakPerson; } static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) { _Block_object_assign((void*)&dst->strogPerson, (void*)src->strogPerson, 3/*BLOCK_FIELD_IS_OBJECT*/); _Block_object_assign((void*)&dst->weakPerson, (void*)src->weakPerson, 3/*BLOCK_FIELD_IS_OBJECT*/); } static void __main_block_dispose_0(struct __main_block_impl_0*src) { _Block_object_dispose((void*)src->strogPerson, 3/*BLOCK_FIELD_IS_OBJECT*/); _Block_object_dispose((void*)src->weakPerson, 3/*BLOCK_FIELD_IS_OBJECT*/); } static struct __main_block_desc_0 { size_t reserved; size_t Block_size; void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*); void (*dispose)(struct __main_block_impl_0*); } __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
block循环引用问题
- 所以为了解决循环引用问题就是将其中的一个引用箭头变为虚线,产生弱引用
self.block = ^{
NSLog(@"age is %d", self.age);
};
struct __MJPerson__test_block_impl_0 {
struct __block_impl impl;
struct __MJPerson__test_block_desc_0* Desc;
MJPerson *const __strong self;
};
- 相当于堆上的block对象持有MJPerson * self指针,该指针指向MJPerson的堆空间内存,同时MJPerson对象持有该block对象,所以就造成了循环引用
解决循环引用问题
-
用__weak, __unsafe_unretained解决,用weak时,相当于block对象里面的MJPerson* self变为弱指针,当指向的堆空间被销毁时,weak修饰的指针变量也会被设置为nil, 但是__unsafe_unretained修饰的指针变量不会被设置为nil,所以如果再次使用改指针变量访问时就会出现坏内存地址崩溃
__weak typeof(self) weakSelf = self; self.block = ^{ NSLog(@"age is %d", weakSelf.age); }; // 使用weak时 struct __MJPerson__test_block_impl_0 { struct __block_impl impl; struct __MJPerson__test_block_desc_0* Desc; MJPerson *const __weak weakSelf; }; // 使用__unsafe_unretained时 struct __MJPerson__test_block_impl_0 { struct __block_impl impl; struct __MJPerson__test_block_desc_0* Desc; MJPerson *const __unsafe_unretained weakSelf; };
用__block解决,必须调用block,同时必选在block内手动设置nil, 我们知道__block对应的c++代码是会把self进行一个对象的包装,通过访问其内部的farwarding指针获取到对象内存,在block内存手动将其设置为nil,就相当于__block对象不持有self
__block id weakSelf = self;
self.block = ^{
NSLog(@"age is %@", weakSelf);
weakSelf = nil;
};
self.block();
struct __MJPerson__test_block_impl_0 {
struct __block_impl impl;
struct __MJPerson__test_block_desc_0* Desc;
__Block_byref_weakSelf_0 *weakSelf; // by ref
};
struct __Block_byref_weakSelf_0 {
void *__isa;
__Block_byref_weakSelf_0 *__forwarding;
int __flags;
int __size;
void (*__Block_byref_id_object_copy)(void*, void*);
void (*__Block_byref_id_object_dispose)(void*);
__strong id weakSelf;
};
一些问题
block为什么要进行外部变量捕获?
-
为何要将block转为一个类?用函数指针不行吗?
- block本身存在一种操作那个,就是外部局部变量的捕获,需要将block相关的动效保存起来,OC都会转为C++代码,C++中能同时保存方法和变量的就是类;函数和函数指针办不到外部局部变量的捕获的功能
-
为何static局部变量进行的是指针捕获? 值捕获不行吗?
- 首先要明白:static局部变量具有的特性:仍然是局部变量,加上static修饰后,局部变量的生命周就变得跟全局变量一样(static局部变量的存储区域放在了全局,但是作用域仍然是函数调用栈的作用域,全局的变量在程序运行过程中,只会被声明及初始化一次,并且是在程序结束时才销毁),基于static变量的特性,是局部变量所以就会被捕获,在全局区,只能声明和初始化一次,并且随时访问到的是同一块内存空间,所以最简单的做法就是将static局部变量的内存地址保存下来,通过这个地址随时访问那一块内存空间