堆排序(下):最大堆

二叉堆,简称堆 Heap

尖的完全二叉树。也有三叉堆以及普通堆,但大部分时候堆就是指二叉堆

  • 二叉堆的定义

一棵完全二叉树
父节点的值 >= 子节点的值,则称为最大二叉堆

父节点的值 <= 子节点的值,则称为最小二叉堆

注意:并没有要求左右节点的大小顺序

  • 举例

[35,26,48,10,59,64,17,23,45,31]

image.png

最大堆的性质

  • 堆序性 heap order

任意节点 >= 它的所有后代,最大值在堆的根上

  • 完全树

只有最底层不满,且节点尽可能的往左靠

最小堆的性质

  • 堆序性 heap order

任意节点 <= 它的所有后代,最小值在堆的根上

  • 完全树

只有最底层不满,且节点尽可能的往左靠

堆的 API

image.png

API - heapify 如何把完全二叉树变成堆

完全二叉树可以用数组存储

思路 (siftDown)

image.png

从最后一个节点开始,逐个向前,把每个节点与其后代比较,最大的放在上面

注意一个节点有可能需要调整多次(递归)

由于每次调整都是把数字下降,所以叫 siftDown

  • 代码
const array = [35, 26, 48, 10, 59, 64, 17, 23, 45, 31]
const heapify = array => {
    for (let i = parseInt((array.length - 1) / 2); i >= 0; i--) {
        siftDown(array, i, array.length)
    }
    return array
}
siftDown = (heap, i, length) => {
    const left = 2 * i + 1, right = 2 * i + 2
    let greater = left
    if (greater >= length) {return}
    if (right < length && heap[right] > heap[greater]) {
        greater = right
    }
    if(heap[greater]>heap[i]){
        console.log(`换 ${heap[greater]} ${heap[i]}`);
    [heap[greater],heap[i]] = [heap[i],heap[greater]]
    siftDown(heap, greater, length)
}
}
heapify(array)
// [64, 59, 48, 45, 31, 35, 17, 23, 10, 26]
image.png

问答

  • 为什么要从后往前

为了从易到难

  • 为什么从 59 开始

因为所以叶子节点都可以跳过

  • 什么时候递归

调整父子之后,子节点所在的子树要再调整一次

API - insert(heap, item) 如何向堆中插入一个值

要保证插入之后,依然得到一个堆

思路 (siftUp)

image.png
  • 代码
const heap = [64,59,48,45,31,35,17,23,10,26]
const insert = (heap, item) => {
    heap.push(item) //  把新值放到最后一个
    siftUp(heap, heap.length-1) //  开始上升
}
siftUp = (heap, i) => {
    if(i===0){return}
    const parent = parseInt((i-1)/2)
    if(heap[i]>heap[parent]){
        console.log(`换 ${heap[i]} ${heap[parent]}`);
        [heap[i],heap[parent]]=[heap[parent],heap[i]]
        siftUp(heap, parent)
    } }

insert(heap, 60)
console.log(heap) // [64, 60, 48, 45, 59, 35, 17, 23, 10, 26, 31]
image.png

API - extractMax(heap) 如何弹出堆顶的值

要保证弹出后,剩下的元素依然组成堆

思路 (extractMax)

image.png
  • 代码
const heap = [64, 60, 48, 45, 59, 35, 17, 23, 10, 26, 31]

const extractMax = (heap, start, end) => {
    [heap[start], heap[end - 1]] = [heap[end - 1], heap[start]]
    const max = heap[end - 1]
    siftDown(heap, start, end - 1)  // 将 start 沉下去
    return max
}

const siftDown = (heap, i, length) => {
    const left = 2 * i + 1,
        right = 2 * i + 2
    let greater = left
    if (greater >= length) return
    if (right < length && heap[right] > heap[greater]) {
        greater = right
    }
    if (heap[greater] > heap[i]) {
        console.log(`交换 ${heap[greater]} ${heap[i]}`);
        [heap[greater], heap[i]] = [heap[i], heap[greater]]
        siftDown(heap, greater, length)
    }
}

max = extractMax(heap, 0, heap.length)
heap.pop() // 删掉最后一个多余的最大值
console.log(max, heap)
// 64, [60, 59, 48, 45, 31, 35, 17, 23, 10, 26]
image.png

堆排序

  • 思路(结合前面的知识可以很简单的写出堆排序)


    image.png
  • 代码

array = [9,5,1,4,7,8,3,2,6]

const heapSort = arr => {
    // 第一步:数组变成堆 O(N*logN)
    const heap = heapify(arr)
    // 第二步:不停把最大的放到最后 O(N*logN)
    for(let i=0; i {
    for (let i = parseInt((array.length - 1) / 2); i >= 0; i--) {
        siftDown(array, i, array.length)
    }
    return array
}

const siftDown = (heap, i, length) => {
    const left = 2 * i + 1, right = 2 * i + 2
    let greater = left
    if (greater >= length) {return}
    if (right < length && heap[right] > heap[greater]) {
        greater = right
    }
    if (heap[greater] > heap[i]) {
        console.log(`换 ${heap[greater]} ${heap[i]}`);
        [heap[greater], heap[i]] = [heap[i], heap[greater]]
        siftDown(heap, greater, length)
    }
}
const extractMax = (heap, start, end) => {
    [heap[start], heap[end - 1]] = [heap[end - 1], heap[start]]
    const max = heap[end - 1]
    siftDown(heap, start, end - 1)  // 将 start 沉下去
    return max
}

heapSort(array)
console.log(array)
// [1, 2, 3, 4, 5, 6, 7, 8, 9]
//   O(2*N*logN) O(N*logN)
image.png

你可能感兴趣的:(堆排序(下):最大堆)