信号与系统-从傅里叶级数到傅里叶变换

傅里叶级数复数表达式为

{ x ( t ) = ∑ k = − ∞ + ∞ a k e j k ω 0 t a k = 1 T 0 ∫ 0 T 0 x ( t ) e − j k ω 0 t d t \left \{ \begin{array}{c} x(t)= \sum_{k=-\infty}^{+\infty}a_ke^{jk\omega_0t}\\ a_k=\frac{1}{T_0}\int_{0}^{T_0}x(t)e^{-jk\omega_0t}dt \end{array} \right. {x(t)=k=+akejkω0tak=T010T0x(t)ejkω0tdt

其中 x ( t ) x(t) x(t)是以 T 0 T_0 T0为周期, ω 0 = 2 π T 0 \omega_0 = \frac{2\pi}{T_0} ω0=T02π

定义:

X ( j ω ) = ∫ T 0 x ( t ) e − j ω t d t = ∫ − ∞ ∞ x ( t ) e − j ω t d t X(j\omega)=\int_{T_0}x(t)e^{-j\omega t}dt = \int _{-\infty}^{\infty}x(t)e^{-j\omega t}dt X()=T0x(t)etdt=x(t)etdt

则有:

a k = 1 T 0 ∫ T 0 e − j k ω 0 t d t = 1 T 0 X ( j k ω 0 ) \begin{aligned} a_k &= \frac{1}{T_0} \int _{T_0}e^{-jk\omega_0t}dt \\ &= \frac{1}{T_0}X(jk\omega_0) \end{aligned} ak=T01T0ejkω0tdt=T01X(jkω0)

x ( t ) = ∑ k = − ∞ + ∞ 1 T 0 X ( j k ω 0 ) e j k ω 0 t = 1 ω 0 T 0 ∑ k = − ∞ + ∞ X ( j k ω 0 ) e j k ω 0 t ω 0 \begin{aligned} x(t) &= \sum_{k=-\infty}^{+\infty}\frac{1}{T_0}X(jk\omega_0)e^{jk\omega_0t} \\ &= \frac{1}{\omega_0T_0}\sum_{k=-\infty}^{+\infty}X(jk\omega_0)e^{jk\omega_0t}\omega_0 \end{aligned} x(t)=k=+T01X(jkω0)ejkω0t=ω0T01k=+X(jkω0)ejkω0tω0

非周期 x ( t ) x(t) x(t)可以推出 T 0 = + ∞ T_0=+\infty T0=+进而可以推出 ω 0 = 2 π ω 0 \omega_0=\frac{2\pi}{\omega_0} ω0=ω02π趋于0

x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( j ω ) e j ω t d ω x(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(j\omega)e^{j\omega t}d\omega x(t)=2π1+X()etdω

非周期函数 x ( t ) x(t) x(t)的傅里叶变换对

{ X ( j ω ) = ∫ − ∞ + ∞ x ( t ) e − j ω t x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( j ω ) e j ω t d ω \left \{ \begin{array}{c} X(j\omega)= \int_{-\infty}^{+\infty}x(t)e^{-j\omega t}\\ x(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(j\omega)e^{j\omega t}d\omega \end{array} \right. {X()=+x(t)etx(t)=2π1+X()etdω

X ( j ω ) X(j\omega) X() x ( t ) x(t) x(t)互为傅里叶变换对

参考文献

https://www.bilibili.com/video/BV1g94y1Q76G?p=20&vd_source=b3a15f5d8887594220b3104779be9fc3

你可能感兴趣的:(信号与系统,信号与系统,傅里叶级数,傅里叶变换)