关于Flutter的运转、实现等

# Flutter是什么 > Flutter 是谷歌的移动 UI 框架,可以快速在 iOS 和 Android 上构建高质量的原生用户界面,同时也支持Mac、Windows、Linux、Web、嵌入式等等。Flutter 可以与现有的代码一起工作。 > > 在全世界,Flutter 正在被越来越多的开发者和组织使用,并且 Flutter 是完全免费、开源的。 ## Flutter如何运转的 Flutter 是重写了一整套包括底层渲染逻辑和上层开发语言的完整解决方案。 ### Flutter 是怎么完成组件渲染的 想要了解flutter组件渲染,要先从图像显示的基本原理说起 1. 在计算机系统中,图像的显示需要 CPU、GPU 和显示器一起配合完成:CPU 负责图像数据计算,GPU 负责图像数据渲染,而显示器则负责最终图像显示。 2. CPU 把计算好的、需要显示的内容交给 GPU,由 GPU 完成渲染后放入帧缓冲区,随后视频控制器根据垂直同步信号(VSync)以每秒 60 次的速度,从帧缓冲区读取帧数据交由显示器完成图像显示。 3. 操作系统在呈现图像时遵循了这种机制,而 Flutter 作为跨平台开发框架也采用了这种底层方案。 **flutter绘制原理如下图** ![flutter绘制原理.png](https://upload-images.jianshu.io/upload_images/11476712-352115de162b38c9.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240) 可以看出,Flutter 关注如何尽可能快地在两个硬件时钟的 VSync 信号之间计算并合成视图数据,然后通过 Skia 交给 GPU 渲染:UI 线程使用 Dart 来构建视图结构数据,这些数据会在 GPU 线程进行图层合成,随后交给 Skia 引擎加工成 GPU 数据,而这些数据会通过 OpenGL 最终提供给 GPU 渲染。 **Skia是什么?** 可以看出,Skia是Flutter的底层图像渲染引擎,由它向 GPU 提供视图数据。那么这个Skia具体是什么呢 Skia 是一款用 C++ 开发的、性能彪悍的 2D 图像绘制引擎,其前身是一个向量绘图软件。2005 年被 Google 公司收购后,因为其出色的绘制表现被广泛应用在 Chrome 和 Android 等核心产品上。Skia 在图形转换、文字渲染、位图渲染方面都表现卓越,并提供了开发者友好的 API。 目前,Skia 已然是 Android 官方的图像渲染引擎了,因此 Flutter Android SDK 无需内嵌 Skia 引擎就可以获得天然的 Skia 支持;而对于 iOS 平台来说,由于 Skia 是跨平台的,因此它作为 Flutter iOS 渲染引擎被嵌入到 Flutter 的 iOS SDK 中,替代了 iOS 闭源的 Core Graphics/Core Animation/Core Text,这也正是 Flutter iOS SDK 打包的 App 包体积比 Android 要大一些的原因。 底层渲染能力统一了,上层开发接口和功能体验也就随即统一了,开发者再也不用操心平台相关的渲染特性了。也就是说,Skia 保证了同一套代码调用在 Android 和 iOS 平台上的渲染效果是完全一致的。 **Flutter为什么选用Dart?** Flutter 为什么选择了 Dart,而不是前端应用的准官方语言 JavaScript 呢?这个问题很有很有争议 但,**Google 公司给出的原因很简单也很直接**:Dart 语言开发组就在隔壁,对于 Flutter 需要的一些语言新特性,能够快速在语法层面落地实现;而如果选择了 JavaScript,就必须经过各种委员会和浏览器提供商漫长的决议。 当然,Google 公司选择使用 Dart 作为 Flutter 的开发语言,我想还有其他更有说服力的理由: 1. Dart 同时支持即时编译 JIT 和事前编译 AOT。在开发期使用 JIT,开发周期异常短,调试方式颠覆常规(支持有状态的热重载);而发布期使用 AOT,本地代码的执行更高效,代码性能和用户体验也更卓越。 2. Dart 作为一门现代化语言,集百家之长,拥有其他优秀编程语言的诸多特性(比如,完善的包管理机制)。也正是这个原因,Dart 的学习成本并不高,很容易上手。 3. Dart 避免了抢占式调度和共享内存,可以在没有锁的情况下进行对象分配和垃圾回收,在性能方面表现相当不错。 **Flutter的实现原理** flutter的架构图如下 ![flutter架构图.png](https://upload-images.jianshu.io/upload_images/11476712-5eb25e950d5fe4ff.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240) 引自[architectural-overview](https://docs.flutter.dev/resources/architectural-overview) Flutter 架构采用分层设计,从下到上分为三层,依次为:Embedder、Engine、Framework。 * Embedder 是操作系统适配层,实现了渲染 Surface 设置,线程设置,以及平台插件等平台相关特性的适配。从这里我们可以看到,Flutter 平台相关特性并不多,这就使得从框架层面保持跨端一致性的成本相对较低。 * Engine 层主要包含 Skia、Dart 和 Text,实现了 Flutter 的渲染引擎、文字排版、事件处理和 Dart 运行时等功能。Skia 和Text 为上层接口提供了调用底层渲染和排版的能力,Dart 则为 Flutter 提供了运行时调用 Dart 和渲染引擎的能力。而Engine 层的作用,则是将它们组合起来,从它们生成的数据中实现视图渲染。 * Framework 层则是一个用 Dart 实现的 UI SDK,包含了动画、图形绘制和手势识别等功能。为了在绘制控件等固定样式的图形时提供更直观、更方便的接口,Flutter还基于这些基础能力,根据 Material 和 Cupertino 两种视觉设计风格封装了一套 UI 组件库。我们在开发 Flutter的时候,可以直接使用这些组件库。 **Flutter的工作流程** 页面中的各界面元素(Widget)以树的形式组织,即控件树。Flutter 通过控件树中的每个控件创建不同类型的渲染对象,组成渲染对象树。而渲染对象树在 Flutter 的展示过程分为四个阶段:**布局**、**绘制**、**合成**和**渲染**。 * **布局:**Flutter 采用深度优先机制遍历渲染对象树,决定渲染对象树中各渲染对象在屏幕上的位置和尺寸。在布局过程中,渲染对象树中的每个渲染对象都会接收父对象的布局约束参数,决定自己的大小,然后父对象按照控件逻辑决定各个子对象的位置,完成布局过程。为了防止因子节点发生变化而导致整个控件树重新布局,Flutter 加入了一个机制——布局边界(Relayout Boundary),可以在某些节点自动或手动地设置布局边界,当边界内的任何对象发生重新布局时,不会影响边界外的对象,反之亦然。 * **绘制:**布局完成后,渲染对象树中的每个节点都有了明确的尺寸和位置。Flutter 会把所有的渲染对象绘制到不同的图层上。与布局过程一样,绘制过程也是深度优先遍历,而且总是先绘制自身,再绘制子节点。为了解决性能损耗,Flutter 提出了与布局边界对应的机制——重绘边界(Repaint Boundary)。在重绘边界内,Flutter 会强制切换新的图层,这样就可以避免边界内外的互相影响,避免无关内容置于同一图层引起不必要的重绘。重绘边界的一个典型场景是 Scrollview。ScrollView 滚动的时候需要刷新视图内容,从而触发内容重绘。而当滚动内容重绘时,一般情况下其他内容是不需要重绘的,这时候重绘边界就派上用场了。 * **合成:**终端设备的页面越来越复杂,因此 Flutter 的渲染树层级通常很多,直接交付给渲染引擎进行多图层渲染,可能会出现大量渲染内容的重复绘制,所以还需要先进行一次图层合成,即将所有的图层根据大小、层级、透明度等规则计算出最终的显示效果,将相同的图层归类合并,简化渲染树,提高渲染效率 * **渲染:**合并完成后,Flutter 会将几何图层数据交由 Skia 引擎加工成二维图像数据,最终交由 GPU 进行渲染,完成界面的展示。具体如上所述

你可能感兴趣的:(关于Flutter的运转、实现等)