浅谈Linux内存管理机制

经常遇到一些刚接触Linux的新手会问内存占用怎么那么多?在Linux中经常发现空闲内存很少,似乎所有的内存都被系统占用了,表面感觉是内存不够用了,其实不然。这是Linux内存管理的一个优秀特性,在这方面,区别于Windows的内存管理。

AD:2014WOT全球软件技术峰会北京站 课程视频发布

经常遇到一些刚接触Linux的新手会问内存占用怎么那么多?

在Linux中经常发现空闲内存很少,似乎所有的内存都被系统占用了,表面感觉是内存不够用了,其实不然。这是Linux内存管理的一个优秀特性,在这方面,区别于Windows的内存管理。主要特点是,无论物理内存有多大,Linux 都将其充份利用,将一些程序调用过的硬盘数据读入内存,利用内存读写的高速特性来提高Linux系统的数据访问性能。而Windows是只在需要内存时,才为应用程序分配内存,并不能充分利用大容量的内存空间。换句话说,每增加一些物理内存,Linux都将能充分利用起来,发挥了硬件投资带来的好处,而Windows只将其做为摆设,即使增加8GB甚至更大。

Linux的这一特性,主要是利用空闲的物理内存,划分出一部份空间,做为cache、buffers ,以此提高数据访问性能。

页高速缓存(cache)是Linux内核实现的一种主要磁盘缓存。它主要用来减少对磁盘的I/O操作。具体地讲,是通过把磁盘中的数据缓存到物理内存中,把对磁盘的访问变为对物理 内存的访问。

磁盘高速缓存的价值在于两个方面:第一,访问磁盘的速度要远远低于访问内存的速度,因此,从内存访问数据比从磁盘访问速度更快。第二,数据一旦被访问,就很有可能在短期内再次被访问到。

下面来了解下Linux内存管理机制:

一、物理内存和虚拟内存

我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样就引出了物理内存与虚拟内存的概念。

物理内存就是系统硬件提供的内存大小,是真正的内存,相对于物理内存,在Linux下还有一个虚拟内存的概念,虚拟内存就是为了满足物理内存的不足而提出的策略,它是利用磁盘空间虚拟出的一块逻辑内存,用作虚拟内存的磁盘空间被称为交换空间(Swap Space)。

作为物理内存的扩展,Linux会在物理内存不足时,使用交换分区的虚拟内存,更详细的说,就是内核会将暂时不用的内存块信息写到交换空间,这样以来,物理内存得到了释放,这块内存就可以用于其它目的,当需要用到原始的内容时,这些信息会被重新从交换空间读入物理内存。

Linux的内存管理采取的是分页存取机制,为了保证物理内存能得到充分的利用,内核会在适当的时候将物理内存中不经常使用的数据块自动交换到虚拟内存中,而将经常使用的信息保留到物理内存。

要深入了解Linux内存运行机制,需要知道下面提到的几个方面:

Linux系统会不时的进行页面交换操作,以保持尽可能多的空闲物理内存,即使并没有什么事情需要内存,Linux也会交换出暂时不用的内存页面。这可以避免等待交换所需的时间。
Linux进行页面交换是有条件的,不是所有页面在不用时都交换到虚拟内存,Linux内核根据”最近最经常使用“算法,仅仅将一些不经常使用的页面文件交换到虚拟内存,有时我们会看到这么一个现象:Linux物理内存还有很多,但是交换空间也使用了很多。其实,这并不奇怪,例如,一个占用很大内存的进程运行时,需要耗费很多内存资源,此时就会有一些不常用页面文件被交换到虚拟内存中,但后来这个占用很多内存资源的进程结束并释放了很多内存时,刚才被交换出去的页面文件并不会自动的交换进物理内存,除非有这个必要,那么此刻系统物理内存就会空闲很多,同时交换空间也在被使用,就出现了刚才所说的现象了。关于这点,不用担心什么,只要知道是怎么一回事就可以了。
交换空间的页面在使用时会首先被交换到物理内存,如果此时没有足够的物理内存来容纳这些页面,它们又会被马上交换出去,如此以来,虚拟内存中可能没有足够空间来存储这些交换页面,最终会导致Linux出现假死机、服务异常等问题,Linux虽然可以在一段时间内自行恢复,但是恢复后的系统已经基本不可用了。
因此,合理规划和设计Linux内存的使用,是非常重要的.

二、内存的监控

作为一名Linux系统管理员,监控内存的使用状态是非常重要的,通过监控有助于了解内存的使用状态,比如内存占用是否正常,内存是否紧缺等等,监控内存最常使用的命令有free、top等,下面是某个系统free的输出:

[root@linuxeye ~]# free 
             total       used       free     shared    buffers     cached 
Mem:       3894036    3473544     420492          0      72972    1332348 
-/+ buffers/cache:    2068224    1825812 
Swap:      4095992     906036    3189956 
每个选项的含义:

第一行:

total:物理内存的总大小

used:已经使用的物理内存大小

free:空闲的物理内存大小

shared:多个进程共享的内存大小

buffers/cached:磁盘缓存的大小

第二行Mem:代表物理内存使用情况

第三行(-/+ buffers/cached):代表磁盘缓存使用状态

第四行:Swap表示交换空间内存使用状态

free命令输出的内存状态,可以通过两个角度来查看:一个是从内核的角度来看,一个是从应用层的角度来看的。

从内核的角度来查看内存的状态

就是内核目前可以直接分配到,不需要额外的操作,即为上面free命令输出中第二行Mem项的值,可以看出,此系统物理内存有3894036K,空闲的内存只有420492K,也就是40M多一点,我们来做一个这样的计算:

38940363473544 = 420492

其实就是总的物理内存减去已经使用的物理内存得到的就是空闲的物理内存大小,注意这里的可用内存值420492并不包含处于buffers和cached状态的内存大小。

如果你认为这个系统空闲内存太小,那你就错了,实际上,内核完全控制着内存的使用情况,Linux会在需要内存的时候,或在系统运行逐步推进时,将buffers和cached状态的内存变为free状态的内存,以供系统使用。

从应用层的角度来看系统内存的使用状态

也就是Linux上运行的应用程序可以使用的内存大小,即free命令第三行 -/+ buffers/cached 的输出,可以看到,此系统已经使用的内存才2068224K,而空闲的内存达到1825812K,继续做这样一个计算:

420492+(729721332348)=1825812

通过这个等式可知,应用程序可用的物理内存值是Mem项的free值加上buffers和cached值之和,也就是说,这个free值是包括buffers和cached项大小的,对于应用程序来说,buffers/cached占有的内存是可用的,因为buffers/cached是为了提高文件读取的性能,当应用程序需要用到内存的时候,buffers/cached会很快地被回收,以供应用程序使用。

buffers与cached的异同

在Linux 操作系统中,当应用程序需要读取文件中的数据时,操作系统先分配一些内存,将数据从磁盘读入到这些内存中,然后再将数据分发给应用程序;当需要往文件中写数据时,操作系统先分配内存接收用户数据,然后再将数据从内存写到磁盘上。然而,如果有大量数据需要从磁盘读取到内存或者由内存写入磁盘时,系统的读写性能就变得非常低下,因为无论是从磁盘读数据,还是写数据到磁盘,都是一个很消耗时间和资源的过程,在这种情况下,Linux引入了buffers和cached机制。

buffers与cached都是内存操作,用来保存系统曾经打开过的文件以及文件属性信息,这样当操作系统需要读取某些文件时,会首先在buffers与cached内存区查找,如果找到,直接读出传送给应用程序,如果没有找到需要数据,才从磁盘读取,这就是操作系统的缓存机制,通过缓存,大大提高了操作系统的性能。但buffers与cached缓冲的内容却是不同的。

buffers是用来缓冲块设备做的,它只记录文件系统的元数据(metadata)以及 tracking in-flight pages,而cached是用来给文件做缓冲。更通俗一点说:buffers主要用来存放目录里面有什么内容,文件的属性以及权限等等。而cached直接用来记忆我们打开过的文件和程序。

为了验证我们的结论是否正确,可以通过vi打开一个非常大的文件,看看cached的变化,然后再次vi这个文件,感觉一下两次打开的速度有何异同,是不是第二次打开的速度明显快于第一次呢?

接着执行下面的命令:

find /* -name  *.conf 
看看buffers的值是否变化,然后重复执行find命令,看看两次显示速度有何不同。

Linux操作系统的内存运行原理,很大程度上是根据服务器的需求来设计的,例如系统的缓冲机制会把经常使用到的文件和数据缓存在cached中,linux总是在力求缓存更多的数据和信息,这样再次需要这些数据时可以直接从内存中取,而不需要有一个漫长的磁盘操作,这种设计思路提高了系统的整体性能。

浅谈Linux内存管理机制_第1张图片

[地址映射](图:左中)
linux内核使用页式内存管理,应用程序给出的内存地址是虚拟地址,它需要经过若干级页表一级一级的变换,才变成真正的物理地址。
想一下,地址映射还是一件很恐怖的事情。当访问一个由虚拟地址表示的内存空间时,需要先经过若干次的内存访问,得到每一级页表中用于转换的页表项(页表是存放在内存里面的),才能完成映射。也就是说,要实现一次内存访问,实际上内存被访问了N+1次(N=页表级数),并且还需要做N次加法运算。
所以,地址映射必须要有硬件支持,mmu(内存管理单元)就是这个硬件。并且需要有cache来保存页表,这个cache就是TLB(Translation lookaside buffer)。
尽管如此,地址映射还是有着不小的开销。假设cache的访存速度是内存的10倍,命中率是40%,页表有三级,那么平均一次虚拟地址访问大概就消耗了两次物理内存访问的时间。
于是,一些嵌入式硬件上可能会放弃使用mmu,这样的硬件能够运行VxWorks(一个很高效的嵌入式实时操作系统)、linux(linux也有禁用mmu的编译选项)、等系统。
但是使用mmu的优势也是很大的,最主要的是出于安全性考虑。各个进程都是相互独立的虚拟地址空间,互不干扰。而放弃地址映射之后,所有程序将运行在同一个地址空间。于是,在没有mmu的机器上,一个进程越界访存,可能引起其他进程莫名其妙的错误,甚至导致内核崩溃。
在地址映射这个问题上,内核只提供页表,实际的转换是由硬件去完成的。那么内核如何生成这些页表呢?这就有两方面的内容,虚拟地址空间的管理和物理内存的管理。(实际上只有用户态的地址映射才需要管理,内核态的地址映射是写死的。)

[虚拟地址管理](图:左下)
每个进程对应一个task结构,它指向一个mm结构,这就是该进程的内存管理器。(对于线程来说,每个线程也都有一个task结构,但是它们都指向同一个mm,所以地址空间是共享的。)
mm->pgd指向容纳页表的内存,每个进程有自已的mm,每个mm有自己的页表。于是,进程调度时,页表被切换(一般会有一个CPU寄存器来保存页表的地址,比如X86下的CR3,页表切换就是改变该寄存器的值)。所以,各个进程的地址空间互不影响(因为页表都不一样了,当然无法访问到别人的地址空间上。但是共享内存除外,这是故意让不同的页表能够访问到相同的物理地址上)。
用户程序对内存的操作(分配、回收、映射、等)都是对mm的操作,具体来说是对mm上的vma(虚拟内存空间)的操作。这些vma代表着进程空间的各个区域,比如堆、栈、代码区、数据区、各种映射区、等等。
用户程序对内存的操作并不会直接影响到页表,更不会直接影响到物理内存的分配。比如malloc成功,仅仅是改变了某个vma,页表不会变,物理内存的分配也不会变。
假设用户分配了内存,然后访问这块内存。由于页表里面并没有记录相关的映射,CPU产生一次缺页异常。内核捕捉异常,检查产生异常的地址是不是存在于一个合法的vma中。如果不是,则给进程一个"段错误",让其崩溃;如果是,则分配一个物理页,并为之建立映射。

[物理内存管理](图:右上)
那么物理内存是如何分配的呢?
首先,linux支持NUMA(非均质存储结构),物理内存管理的第一个层次就是介质的管理。pg_data_t结构就描述了介质。一般而言,我们的内存管理介质只有内存,并且它是均匀的,所以可以简单地认为系统中只有一个pg_data_t对象。
每一种介质下面有若干个zone。一般是三个,DMA、NORMAL和HIGH。
DMA:因为有些硬件系统的DMA总线比系统总线窄,所以只有一部分地址空间能够用作DMA,这部分地址被管理在DMA区域(这属于是高级货了);
HIGH:高端内存。在32位系统中,地址空间是4G,其中内核规定3~4G的范围是内核空间,0~3G是用户空间(每个用户进程都有这么大的虚拟空间)(图:中下)。前面提到过内核的地址映射是写死的,就是指这3~4G的对应的页表是写死的,它映射到了物理地址的0~1G上。(实际上没有映射1G,只映射了896M。剩下的空间留下来映射大于1G的物理地址,而这一部分显然不是写死的)。所以,大于896M的物理地址是没有写死的页表来对应的,内核不能直接访问它们(必须要建立映射),称它们为高端内存(当然,如果机器内存不足896M,就不存在高端内存。如果是64位机器,也不存在高端内存,因为地址空间很大很大,属于内核的空间也不止1G了);
NORMAL:不属于DMA或HIGH的内存就叫NORMAL。
在zone之上的zone_list代表了分配策略,即内存分配时的zone优先级。一种内存分配往往不是只能在一个zone里进行分配的,比如分配一个页给内核使用时,最优先是从NORMAL里面分配,不行的话就分配DMA里面的好了(HIGH就不行,因为还没建立映射),这就是一种分配策略。
每个内存介质维护了一个mem_map,为介质中的每一个物理页面建立了一个page结构与之对应,以便管理物理内存。
每个zone记录着它在mem_map上的起始位置。并且通过free_area串连着这个zone上空闲的page。物理内存的分配就是从这里来的,从 free_area上把page摘下,就算是分配了。(内核的内存分配与用户进程不同,用户使用内存会被内核监督,使用不当就"段错误";而内核则无人监督,只能靠自觉,不是自己从free_area摘下的page就不要乱用。)

[建立地址映射]
内核需要物理内存时,很多情况是整页分配的,这在上面的mem_map中摘一个page下来就好了。比如前面说到的内核捕捉缺页异常,然后需要分配一个page以建立映射。
说到这里,会有一个疑问,内核在分配page、建立地址映射的过程中,使用的是虚拟地址还是物理地址呢?首先,内核代码所访问的地址都是虚拟地址,因为CPU指令接收的就是虚拟地址(地址映射对于CPU指令是透明的)。但是,建立地址映射时,内核在页表里面填写的内容却是物理地址,因为地址映射的目标就是要得到物理地址。
那么,内核怎么得到这个物理地址呢?其实,上面也提到了,mem_map中的page就是根据物理内存来建立的,每一个page就对应了一个物理页。
于是我们可以说,虚拟地址的映射是靠这里page结构来完成的,是它们给出了最终的物理地址。然而,page结构显然是通过虚拟地址来管理的(前面已经说过,CPU指令接收的就是虚拟地址)。那么,page结构实现了别人的虚拟地址映射,谁又来实现page结构自己的虚拟地址映射呢?没人能够实现。
这就引出了前面提到的一个问题,内核空间的页表项是写死的。在内核初始化时,内核的地址空间就已经把地址映射写死了。page结构显然存在于内核空间,所以它的地址映射问题已经通过“写死”解决了。
由于内核空间的页表项是写死的,又引出另一个问题,NORMAL(或DMA)区域的内存可能被同时映射到内核空间和用户空间。被映射到内核空间是显然的,因为这个映射已经写死了。而这些页面也可能被映射到用户空间的,在前面提到的缺页异常的场景里面就有这样的可能。映射到用户空间的页面应该优先从HIGH区域获取,因为这些内存被内核访问起来很不方便,拿给用户空间再合适不过了。但是HIGH区域可能会耗尽,或者可能因为设备上物理内存不足导致系统里面根本就没有HIGH区域,所以,将NORMAL区域映射给用户空间是必然存在的。
但是NORMAL区域的内存被同时映射到内核空间和用户空间并没有问题,因为如果某个页面正在被内核使用,对应的page应该已经从free_area被摘下,于是缺页异常处理代码中不会再将该页映射到用户空间。反过来也一样,被映射到用户空间的page自然已经从free_area被摘下,内核不会再去使用这个页面。

[内核空间管理](图:右下)
除了对内存整页的使用,有些时候,内核也需要像用户程序使用malloc一样,分配一块任意大小的空间。这个功能是由slab系统来实现的。
slab相当于为内核中常用的一些结构体对象建立了对象池,比如对应task结构的池、对应mm结构的池、等等。
而slab也维护有通用的对象池,比如"32字节大小"的对象池、"64字节大小"的对象池、等等。内核中常用的kmalloc函数(类似于用户态的malloc)就是在这些通用的对象池中实现分配的。
slab除了对象实际使用的内存空间外,还有其对应的控制结构。有两种组织方式,如果对象较大,则控制结构使用专门的页面来保存;如果对象较小,控制结构与对象空间使用相同的页面。
除了slab,linux 2.6还引入了mempool(内存池)。其意图是:某些对象我们不希望它会因为内存不足而分配失败,于是我们预先分配若干个,放在mempool中存起来。正常情况下,分配对象时是不会去动mempool里面的资源的,照常通过slab去分配。到系统内存紧缺,已经无法通过slab分配内存时,才会使用 mempool中的内容。

[页面换入换出](图:左上)(图:右上)
页面换入换出又是一个很复杂的系统。内存页面被换出到磁盘,与磁盘文件被映射到内存,是很相似的两个过程(内存页被换出到磁盘的动机,就是今后还要从磁盘将其载回内存)。所以swap复用了文件子系统的一些机制。
页面换入换出是一件很费CPU和IO的事情,但是由于内存昂贵这一历史原因,我们只好拿磁盘来扩展内存。但是现在内存越来越便宜了,我们可以轻松安装数G的内存,然后将swap系统关闭。于是swap的实现实在让人难有探索的欲望,在这里就不赘述了。(另见:《linux内核页面回收浅析》)

[用户空间内存管理]
malloc是libc的库函数,用户程序一般通过它(或类似函数)来分配内存空间。
libc对内存的分配有两种途径,一是调整堆的大小,二是mmap一个新的虚拟内存区域(堆也是一个vma)。
在内核中,堆是一个一端固定、一端可伸缩的vma(图:左中)。可伸缩的一端通过系统调用brk来调整。libc管理着堆的空间,用户调用malloc分配内存时,libc尽量从现有的堆中去分配。如果堆空间不够,则通过brk增大堆空间。
当用户将已分配的空间free时,libc可能会通过brk减小堆空间。但是堆空间增大容易减小却难,考虑这样一种情况,用户空间连续分配了10块内存,前9块已经free。这时,未free的第10块哪怕只有1字节大,libc也不能够去减小堆的大小。因为堆只有一端可伸缩,并且中间不能掏空。而第10块内存就死死地占据着堆可伸缩的那一端,堆的大小没法减小,相关资源也没法归还内核。
当用户malloc一块很大的内存时,libc会通过mmap系统调用映射一个新的vma。因为对于堆的大小调整和空间管理还是比较麻烦的,重新建一个vma会更方便(上面提到的free的问题也是原因之一)。
那么为什么不总是在malloc的时候去mmap一个新的vma呢?第一,对于小空间的分配与回收,被libc管理的堆空间已经能够满足需要,不必每次都去进行系统调用。并且vma是以page为单位的,最小就是分配一个页;第二,太多的vma会降低系统性能。缺页异常、vma的新建与销毁、堆空间的大小调整、等等情况下,都需要对vma进行操作,需要在当前进程的所有vma中找到需要被操作的那个(或那些)vma。vma数目太多,必然导致性能下降。(在进程的vma较少时,内核采用链表来管理vma;vma较多时,改用红黑树来管理。)

[用户的栈]
与堆一样,栈也是一个vma(图:左中),这个vma是一端固定、一端可伸(注意,不能缩)的。这个vma比较特殊,没有类似brk的系统调用让这个vma伸展,它是自动伸展的。
当用户访问的虚拟地址越过这个vma时,内核会在处理缺页异常的时候将自动将这个vma增大。内核会检查当时的栈寄存器(如:ESP),访问的虚拟地址不能超过ESP加n(n为CPU压栈指令一次性压栈的最大字节数)。也就是说,内核是以ESP为基准来检查访问是否越界。
但是,ESP的值是可以由用户态程序自由读写的,用户程序如果调整ESP,将栈划得很大很大怎么办呢?内核中有一套关于进程限制的配置,其中就有栈大小的配置,栈只能这么大,再大就出错。
对于一个进程来说,栈一般是可以被伸展得比较大(如:8MB)。然而对于线程呢?
首先线程的栈是怎么回事?前面说过,线程的mm是共享其父进程的。虽然栈是mm中的一个vma,但是线程不能与其父进程共用这个vma(两个运行实体显然不用共用一个栈)。于是,在线程创建时,线程库通过mmap新建了一个vma,以此作为线程的栈(大于一般为:2M)。
可见,线程的栈在某种意义上并不是真正栈,它是一个固定的区域,并且容量很有限。

 

你可能感兴趣的:(linux)