C# PaddleInference OCR 验证码识别

说明

C# PaddleInference OCR 验证码识别

自己训练的模型,只针对测试图片类型,准确率99%

效果

C# PaddleInference OCR 验证码识别_第1张图片

C# PaddleInference OCR 验证码识别_第2张图片  

项目

VS2022+.net4.8+OpenCvSharp4+Sdcb.PaddleInference

C# PaddleInference OCR 验证码识别_第3张图片

测试图片

C# PaddleInference OCR 验证码识别_第4张图片

代码

using OpenCvSharp;
using Sdcb.PaddleInference.Native;
using Sdcb.PaddleInference;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using System.Windows.Forms;

namespace PaddleInference_OCR_验证码识别
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        Bitmap bmp;
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string img = "";
        string startupPath = "";

        OcrShape recShape = new OcrShape(3, 320, 48);
        PaddlePredictor rec_predictor;

        public IReadOnlyList Labels;

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;


        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;

            img = ofd.FileName;
            bmp = new Bitmap(img);
            pictureBox1.Image = new Bitmap(img);
            textBox1.Text = "";
        }



        private unsafe void Form1_Load(object sender, EventArgs e)
        {

            string startupPath = Application.StartupPath;
            IntPtr det_ptr = PaddleNative.PD_ConfigCreate();
            Encoding PaddleEncoding = Environment.OSVersion.Platform == PlatformID.Win32NT ? Encoding.GetEncoding(CultureInfo.CurrentCulture.TextInfo.ANSICodePage) : Encoding.UTF8;

            //识别模型
            IntPtr rec_ptr = PaddleNative.PD_ConfigCreate();
            String rec_programPath = startupPath + "\\model\\inference.pdmodel";
            String rec_paramsPath = startupPath + "\\model\\inference.pdiparams";
            byte[] rec_programBytes = PaddleEncoding.GetBytes(rec_programPath);
            byte[] rec_paramsBytes = PaddleEncoding.GetBytes(rec_paramsPath);
            fixed (byte* rec_programPtr = rec_programBytes)
            fixed (byte* rec_paramsPtr = rec_paramsBytes)
            {
                PaddleNative.PD_ConfigSetModel(rec_ptr, (IntPtr)rec_programPtr, (IntPtr)rec_paramsPtr);
            }

            rec_predictor = new PaddlePredictor(PaddleNative.PD_PredictorCreate(rec_ptr));

            //Labels
            String labelsPath = startupPath + "\\ppocr_keys.txt";
            Stream Steam = new FileStream(labelsPath, FileMode.Open, FileAccess.Read, FileShare.Read);
            StreamReader reader = new StreamReader(Steam);
            List tempList = new List();
            while (!reader.EndOfStream)
            {
                tempList.Add(reader.ReadLine());
            }
            reader.Dispose();
            Steam.Dispose();
            Labels = tempList;
        }

        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox1.Image == null)
            {
                return;
            }
            dt1 = DateTime.Now;
            var src = OpenCvSharp.Extensions.BitmapConverter.ToMat(bmp);

            int modelHeight = recShape.Height;
            int maxWidth = (int)Math.Ceiling(1.0 * src.Width / src.Height * modelHeight);

            Mat channel3 = new Mat();
            if (src.Channels() == 4)
            {
                channel3 = src.CvtColor(ColorConversionCodes.RGBA2BGR);
            }
            else if (src.Channels() == 3)
            {
                channel3 = src.Clone();
            }
            else if (src.Channels() == 1)
            {
                channel3 = src.CvtColor(ColorConversionCodes.GRAY2RGB);
            }
            else
            {
                throw new Exception("Unexpect src channel: {" + src.Channels() + "}, allow: (1/3/4)");
            }

            Mat resized = ResizePadding(channel3, modelHeight, maxWidth);
            Mat normalize = Normalize(resized);

            using (PaddleTensor input = rec_predictor.GetInputTensor(rec_predictor.InputNames[0]))
            {
                int channel = normalize.Channels();
                input.Shape = new[] { 1, channel, modelHeight, maxWidth };
                float[] data = ExtractMat(normalize, channel, modelHeight, maxWidth);
                input.SetData(data);
            }

            normalize.Dispose();
            resized.Dispose();

            if (!rec_predictor.Run())
            {
                throw new Exception($"PaddlePredictor(Recognizer) run failed.");
            }

            using (PaddleTensor output = rec_predictor.GetOutputTensor(rec_predictor.OutputNames[0]))
            {
                float[] data = output.GetData();
                int[] shape = output.Shape;
                GCHandle dataHandle = default;
                try
                {
                    dataHandle = GCHandle.Alloc(data, GCHandleType.Pinned);
                    IntPtr dataPtr = dataHandle.AddrOfPinnedObject();

                    int labelCount = shape[2];
                    int charCount = shape[1];

                    StringBuilder sbInfo = new StringBuilder();

                    for (int i = 0; i < shape[0]; i++)
                    {
                        StringBuilder sb = new StringBuilder();
                        int lastIndex = 0;
                        float score = 0;
                        for (int n = 0; n < charCount; ++n)
                        {
                            Mat mat = new Mat(1, labelCount, MatType.CV_32FC1, dataPtr + (n + i * charCount) * labelCount * sizeof(float));
                            int[] maxIdx = new int[2];
                            mat.MinMaxIdx(out double _, out double maxVal, new int[0], maxIdx);
                            if (maxIdx[1] > 0 && (!(n > 0 && maxIdx[1] == lastIndex)))
                            {
                                score += (float)maxVal;
                                sb.Append(GetLabelByIndex(maxIdx[1]));
                            }
                            lastIndex = maxIdx[1];
                            mat.Dispose();
                        }
                        sbInfo.AppendLine("Text:" + sb.ToString());
                        sbInfo.AppendLine("Score:" + score / sb.Length);
                    }

                    dt2 = DateTime.Now;
                    sbInfo.AppendLine("-----------------------------------\n");
                    sbInfo.AppendLine(DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss.fff"));
                    sbInfo.AppendLine("耗时:" + (dt2 - dt1).TotalMilliseconds + "ms\n");
                    textBox1.Text = sbInfo.ToString();
                }
                finally
                {
                    dataHandle.Free();
                }
            }

        }

        string GetLabelByIndex(int x)
        {
            if (x > 0 && x <= Labels.Count)
            {
                return Labels[x - 1];
            }
            else if (x == Labels.Count + 1)
            {
                return "";
            }
            else
            {
                throw new Exception("Unable to GetLabelByIndex: index {" + x + "} out of range {" + Labels.Count + "}, OCR model or labels not matched?");
            }
        }

        private Mat ResizePadding(Mat src, int height, int targetWidth)
        {
            OpenCvSharp.Size size = src.Size();
            float whRatio = 1.0f * size.Width / size.Height;
            int width = (int)Math.Ceiling(height * whRatio);

            if (width == targetWidth)
            {
                return src.Resize(new OpenCvSharp.Size(width, height));
            }
            else
            {
                Mat resized = src.Resize(new OpenCvSharp.Size(width, height));
                return resized.CopyMakeBorder(0, 0, 0, targetWidth - width, BorderTypes.Constant, Scalar.Gray);
            }
        }

        private Mat Normalize(Mat src)
        {
            Mat normalized = new Mat();
            src.ConvertTo(normalized, MatType.CV_32FC3, 1.0 / 255);
            Mat[] bgr = normalized.Split();
            float[] scales = new[] { 1 / 0.229f, 1 / 0.224f, 1 / 0.225f };
            float[] means = new[] { 0.485f, 0.456f, 0.406f };
            for (int i = 0; i < bgr.Length; ++i)
            {
                bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1.0 * scales[i], (0.0 - means[i]) * scales[i]);
            }
            normalized.Dispose();
            Mat dest = new Mat();
            Cv2.Merge(bgr, dest);
            foreach (Mat channel in bgr)
            {
                channel.Dispose();
            }
            return dest;
        }



        private float[] ExtractMat(Mat mat, int channel, int height, int width)
        {
            float[] result = new float[1 * channel * width * height];
            GCHandle resultHandle = GCHandle.Alloc(result, GCHandleType.Pinned);
            IntPtr resultPtr = resultHandle.AddrOfPinnedObject();
            try
            {

                Mat src = mat.Clone();
                if (src.Channels() != channel)
                {
                    throw new Exception($"src channel={src.Channels()}, expected {channel}");
                }
                for (int c = 0; c < channel; ++c)
                {
                    Mat dest = new Mat(height, width, MatType.CV_32FC1, resultPtr + c * height * width * sizeof(float));
                    Cv2.ExtractChannel(src, dest, c);
                    dest.Dispose();
                }
                return result;
            }
            finally
            {
                resultHandle.Free();
            }
        }



        private float[] ExtractMat(Mat[] srcs, int channel, int height, int width)
        {
            float[] result = new float[srcs.Length * channel * width * height];
            GCHandle resultHandle = GCHandle.Alloc(result, GCHandleType.Pinned);
            IntPtr resultPtr = resultHandle.AddrOfPinnedObject();
            try
            {
                for (int i = 0; i < srcs.Length; ++i)
                {
                    Mat src = srcs[i];
                    if (src.Channels() != channel)
                    {
                        throw new Exception($"src[{i}] channel={src.Channels()}, expected {channel}");
                    }
                    for (int c = 0; c < channel; ++c)
                    {
                        Mat dest = new Mat(height, width, MatType.CV_32FC1, resultPtr + (c + i * channel) * height * width * sizeof(float));
                        Cv2.ExtractChannel(src, dest, c);
                        dest.Dispose();
                    }
                }
                return result;
            }
            finally
            {
                resultHandle.Free();
            }
        }

      
    }
}

Demo下载 

你可能感兴趣的:(OpenCV,AI,C#,ocr,C#,验证码识别)