pix2pix-gan做医学图像合成的时候,如果把nii数据转成png格式会损失很多信息,以为png格式图像的灰度值有256阶,因此直接使用nii的医学图像做输入会更好一点。
但是Pythorch中的Dataloader是不能直接读取nii图像的,因此加一个CreateNiiDataset的类。
先来了解一下pytorch中读取数据的主要途径——Dataset类。在自己构建数据层时都要基于这个类,类似于C++中的虚基类。
自己构建的数据层包含三个部分
1 2 3 4 5 6 7 8 9 10 11 12 |
|
根据自己的需要编写CreateNiiDataset子类:
因为我是基于https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
做pix2pix-gan的实验,数据包含两个部分mr 和 ct,不需要标签,因此上面的 def getitem(self, index):中不需要index这个参数了,类似地,根据需要,加入自己的参数,去掉不需要的参数。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
注意:最后输出的data是一个字典,里面有四个keys=[‘A',‘B',‘A_paths',‘B_paths'], 一定要注意数据要转成FloatTensor。
其次是data[‘A_paths'] 接收的值是一个list,一定要加[ ] 扩起来,要不然测试存图的时候会有问题,找这个问题找了好久才发现。
然后直接在train.py的主函数里面把数据加载那行改掉就好了
data_loader = CreateNiiDataset(opt)
dataset = data_loader.load_data()
Over!
补充知识:nii格式图像存为npy格式
我就废话不多说了,大家还是直接看代码吧!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|