linux下使用大恒相机实时运行ORB-SLAM

平台:Ubuntu 16.04
相机: MER-301-125U3M (大恒其他型号的USB相机亦可)

本文是在原有ORB-SLAM源码基础上增加大恒相机的运行示例,用大恒相机实时运行ORB-SLAM。

主要涉及两个地方得修改:

  1. 采图。之前的example是读本地图片传入ORB_SLAM2::System,现在改成用大恒相机实时采图传入
  2. 相机参数。之前的example是用数据集已有的参数,现在是换成自己相机的实际参数

1. 安装大恒的SDK

从大恒官网下载linux的安装包,名称如Galaxy_Linux-x86_Gige-U3_32bits-64bits_1.2.1911.9122.tar.gz
解压后进入Galaxy_Linux-x86_Gige-U3_32bits-64bits_1.2.1911.9122目录,
在终端中运行./Galaxy_camera.run,便会生成安装目录Galaxy_camera

大恒的头文件和库文件:
头文件: 在./Galaxy_camera/inc目录,有DxImageProc.hGxIAPI.h两个文件
库文件: 在系统库目录下,/usr/lib/libgxiapi.so,所以cmake的时候可以直接去链接

2. 下载 ORB-SLAM2 源码

github官方库: https://github.com/raulmur/ORB_SLAM2

下载源码:
git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2

以下所有操作的根目录为上述下载的路径ORB_SLAM2

首先按照上面的库的github首页的编译操作,安装好依赖后,编译源码。

保证源码自身编译没有问题之后,再进行以下步骤。

3. 用大恒相机运行ORB-SLAM

是在原有的Example基础上,加一个用大恒相机运行ORB-SLAM的例子

3.1 涉及修改和新增的目录结构如下

    .
    ├── CMakeLists.txt          (修改)
    ├── DxImageProc.h           (新增)
    ├── GxIAPI.h                (新增)
    └── Examples
        └── Monocular
            ├── mono_daheng.cc  (新增)
            └── daheng.yaml     (新增)
  1. .为根目录ORB_SLAM2
  2. GxIAPI.hDxImageProc.h 为大恒的头文件,从大恒安装目录的inc目录里复制过来
  3. mono_daheng.cc为新增的用大恒相机运行ORB-SLAM的源文件
  4. daheng.yaml为新增的大恒相机的参数文件

3.2 修改根目录下的CMakeLists.txt

在原有的CMakeLists.txt的文件末尾加上如下内容

add_executable(mono_daheng
Examples/Monocular/mono_daheng.cc)
target_link_libraries(mono_daheng ${PROJECT_NAME} gxiapi)

3.3 daheng.yaml

./Examples/Monocular/ 目录下 创建 daheng.yaml 文件,是大恒相机的参数文件,
录入内容如下,里面的相机参数可根据自己相机的情况录入。

关于相机的标定,可以自己写opencv标定程序来标定。
或者使用现有的标定程序来标定,比如ros里有个camera_calibration程序可用于标定。

%YAML:1.0

#--------------------------------------------------------------------------------------------
# Camera Parameters. Adjust them!
#--------------------------------------------------------------------------------------------

# Camera calibration and distortion parameters (OpenCV) 
Camera.fx: 2360.89
Camera.fy: 2363.79
Camera.cx: 1029.18
Camera.cy: 821.37

Camera.k1: -0.095
Camera.k2: 0.353
Camera.p1: 0.0
Camera.p2: 0.0

# Camera frames per second 
Camera.fps: 20.0

# Color order of the images (0: BGR, 1: RGB. It is ignored if images are grayscale)
Camera.RGB: 1

#--------------------------------------------------------------------------------------------
# ORB Parameters
#--------------------------------------------------------------------------------------------

# ORB Extractor: Number of features per image
ORBextractor.nFeatures: 1000

# ORB Extractor: Scale factor between levels in the scale pyramid   
ORBextractor.scaleFactor: 1.2

# ORB Extractor: Number of levels in the scale pyramid  
ORBextractor.nLevels: 8

# ORB Extractor: Fast threshold
# Image is divided in a grid. At each cell FAST are extracted imposing a minimum response.
# Firstly we impose iniThFAST. If no corners are detected we impose a lower value minThFAST
# You can lower these values if your images have low contrast           
ORBextractor.iniThFAST: 20
ORBextractor.minThFAST: 7

#--------------------------------------------------------------------------------------------
# Viewer Parameters
#--------------------------------------------------------------------------------------------
Viewer.KeyFrameSize: 0.05
Viewer.KeyFrameLineWidth: 1
Viewer.GraphLineWidth: 0.9
Viewer.PointSize:2
Viewer.CameraSize: 0.08
Viewer.CameraLineWidth: 3
Viewer.ViewpointX: 0
Viewer.ViewpointY: -0.7
Viewer.ViewpointZ: -1.8
Viewer.ViewpointF: 500

3.4 mono_daheng.cc

./Examples/Monocular/ 目录下 创建 mono_daheng.cc 文件,是用大恒相机运行ORB-SLAM的源文件,
录入内容如下:


#include 
#include
#include
#include
#include

#include

#include

#include "GxIAPI.h"
#include "DxImageProc.h"

using namespace std;

//Show error message
#define GX_VERIFY(emStatus)                \
    if (emStatus != GX_STATUS_SUCCESS)     \
    {                                      \
        GetErrorString(emStatus);          \
        return emStatus;                   \
    }

//Show error message, close device and lib
#define GX_VERIFY_EXIT(emStatus)           \
    if (emStatus != GX_STATUS_SUCCESS)     \
    {                                      \
        GetErrorString(emStatus);          \
        GXCloseDevice(hDevice);            \
        hDevice = NULL;                    \
        GXCloseLib();                      \
        printf("\n");           \
        return emStatus;                   \
    }

//Get description of error
void GetErrorString(GX_STATUS);


int main(int argc, char **argv)
{
    if(argc != 3)
    {
        cerr << endl << "Usage: ./mono_tum path_to_vocabulary path_to_settings" << endl;
        return 1;
    }

    int nImages = 1500; // use 1500 images

    // Create SLAM system. It initializes all system threads and gets ready to process frames.
    ORB_SLAM2::System SLAM(argv[1],argv[2],ORB_SLAM2::System::MONOCULAR,true);

    // Vector for tracking time statistics
    vector vTimesTrack;
    vTimesTrack.resize(nImages);

    cout << endl << "-------" << endl;
    cout << "Start processing sequence ..." << endl;
    cout << "The number of images to be used: " << nImages << endl << endl;

    // daheng 
    GX_STATUS status = GX_STATUS_SUCCESS;
    GX_DEV_HANDLE hDevice = NULL;
    uint32_t nDeviceNum = 0;

    //Initialize libary
    status = GXInitLib();
    if (status != GX_STATUS_SUCCESS) {
        GetErrorString(status);
        GXCloseLib();
        return 0;
    }

    //Get device enumerated number
    status = GXUpdateDeviceList(&nDeviceNum, 1000);
    if (status != GX_STATUS_SUCCESS) {
        GetErrorString(status);
        GXCloseLib();
        return 0;
    }

    //If no device found, app exit
    if(nDeviceNum <= 0) {
        printf("\n");
        GXCloseLib();
        return 0;
    }

    //Open first device enumerated
    status = GXOpenDeviceByIndex(1, &hDevice);
    if (status != GX_STATUS_SUCCESS) {
        GetErrorString(status);
        GXCloseLib();
        return 0;
    }

    //Set acquisition mode
    status = GXSetEnum(hDevice, GX_ENUM_ACQUISITION_MODE, GX_ACQ_MODE_CONTINUOUS);
    GX_VERIFY_EXIT(status);

    //Set trigger mode
    status = GXSetEnum(hDevice, GX_ENUM_TRIGGER_MODE, GX_TRIGGER_MODE_OFF);
    GX_VERIFY_EXIT(status);

    //Device start acquisition
    status = GXStreamOn(hDevice);
    if(status != GX_STATUS_SUCCESS) {
        GX_VERIFY_EXIT(status);
    }

    PGX_FRAME_BUFFER pFrameBuffer = NULL;

    // Main loop
    cv::Mat im;
    struct timeval tv;
    for(int ni=0; ninStatus != GX_FRAME_STATUS_SUCCESS) {
            printf("\n", pFrameBuffer->nStatus);
        }

        
        // image 
        int width = pFrameBuffer->nWidth;
        int height = pFrameBuffer->nHeight;
        // cout <<"pFrameBuffer size: "<< width <<"x"<pImgBuf, cv::Mat::AUTO_STEP);
        
        im = image.clone();

        gettimeofday(&tv, NULL);
        double tframe = (double)(tv.tv_sec) + (tv.tv_usec*1.0)/1000000.0;

        if(im.empty())
        {
            cerr << endl << "im is empty: " << endl;
            continue;
        }

#ifdef COMPILEDWITHC11
        std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
#else
        std::chrono::monotonic_clock::time_point t1 = std::chrono::monotonic_clock::now();
#endif

        // Pass the image to the SLAM system
        SLAM.TrackMonocular(im,tframe);

#ifdef COMPILEDWITHC11
        std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
#else
        std::chrono::monotonic_clock::time_point t2 = std::chrono::monotonic_clock::now();
#endif

        double ttrack= std::chrono::duration_cast >(t2 - t1).count();

        vTimesTrack[ni]=ttrack;

        // // Wait to load the next frame
        // double T=0;
        // if(ni0)
        //     T = tframe-vTimestamps[ni-1];

        // if(ttrack\n");
        return;
    }
    
    // Alloc error resources
    error_info = new char[size];
    if (error_info == NULL)
    {
        printf("\n");
        return ;
    }
    
    // Get error description
    emStatus = GXGetLastError(&emErrorStatus, error_info, &size);
    if (emStatus != GX_STATUS_SUCCESS)
    {
        printf("\n");
    }
    else
    {
        printf("%s\n", (char*)error_info);
    }

    // Realease error resources
    if (error_info != NULL)
    {
        delete []error_info;
        error_info = NULL;
    }
}

3.5 编译运行

在根目录下执行如下脚本,重新编译修改后的源码
./build.sh

编译成功后会在./Examples/Monocular/目录下生成可执行程序mono_daheng,这个便是用大恒相机运行ORB-SLAM的可执行程序,
按照如下方式传参运行:
./Examples/Monocular/mono_daheng Vocabulary/ORBvoc.txt Examples/Monocular/daheng.yaml

运行时保证大恒相机已经连接上,否则不能采图。

4. 参考

关于大恒相机在linux的使用,可以参考之前的一篇博客:
linux下用大恒相机采图
https://www.jianshu.com/p/eb490fae2cf7

关于相机的标定,从网上找到一篇使用ros的camera_calibration包的博客,但是没有尝试过,大家可以尝试一下:
Ubuntu 16.04 ROS标定相机——无坑篇
https://blog.csdn.net/qq_36804363/article/details/89269776

你可能感兴趣的:(linux下使用大恒相机实时运行ORB-SLAM)