- MySQL分区
我说人人平等
mysqlmysql分区
MySQL分区优点:1,和单个磁盘或者文件系统分区相比,可以存储更多数据2,优化查询。在where子句中包含分区条件时,可以只扫描必要的一个或者多个分区来提高查询效率;同时涉及sum()和count()这类聚合查询时,可以容易的在每个分区上并行处理,最终只需要汇总所有分区得到的结果3,对于已经过期或者不需要保存的数据,可以通过删除与这些数据有关的分区来快速删除数据4,跨多个磁盘来分散数据查询,以获
- 如何在YashanDB数据库中实现数据查询优化
数据库
在现代信息技术环境中,数据量的快速增长使得数据库的性能优化成为重要课题。如何提升查询速度,降低资源消耗,成为了数据库管理人员和开发者必须面对的挑战。有效的数据查询优化不仅能提高响应时间,还能显著提升用户体验与系统效率。在YashanDB数据库中,优化数据查询需从多个技术角度进行综合考量与实际应用。利用索引技术优化查询索引是提升数据库查询性能的常用手段。在YashanDB中,主要支持BTree索引、
- 数据仓库技术及应用(Hive 产生背景与架构设计,存储模型与数据类型)
娟恋无暇
数据仓库笔记hive
1.Hive产生背景传统Hadoop架构存在的一些问题:MapReduce编程必须掌握Java,门槛较高传统数据库开发、DBA、运维人员学习门槛高HDFS上没有Schema的概念,仅仅是一个纯文本文件Hive的产生:为了让用户从一个现有数据基础架构转移到Hadoop上现有数据基础架构大多基于关系型数据库和SQL查询Facebook诞生了Hive2.Hive是什么官网:https://hive.ap
- Kafka
小熊哥^--^
kafka分布式
一、什么是Kafka?Kafka的主要用途?Kafka是一个分布式流处理平台,是Apache的一个顶级项目,它被设计用于高吞吐量,分布式、持久性的数据流处理。Kafka实现了一套非常高效的一种发布订阅模型,应用场景非常广泛,比如日志聚合(收集日志)、数据流处理、数据仓库集成(传输数据到数据仓库)、应用程序集成(作为消息中间件来实现异步通信)、流媒体处理(列如实时监控,事件驱动的应用程序)二、top
- 动手实践OpenHands系列学习笔记8:后端服务开发
JeffWoodNo.1
笔记
笔记8:后端服务开发一、引言后端服务是AI代理系统的技术基础,负责处理业务逻辑、状态管理和外部集成。本笔记将探讨API设计与服务架构理论,分析OpenHands的后端设计特点,并通过实践构建一个模拟OpenHands核心功能的后端服务模块。二、API设计与服务架构理论2.1API设计原则RESTful设计:资源化URL设计、HTTP方法语义GraphQL:声明式数据查询、减少请求次数API版本控制
- 解析大数据领域结构化数据的管理模式
大数据洞察
大数据ai
解码结构化数据:大数据时代的高效管理模式与实践指南关键词结构化数据、大数据管理、数据建模、分布式数据库、数据仓库、数据治理、性能优化摘要在大数据的洪流中,结构化数据犹如隐藏在波涛之下的磐石,虽然不如非结构化数据那般引人注目,却是企业决策的基石。本文深入剖析了大数据环境下结构化数据的管理模式,从传统关系型数据库到现代分布式系统,从数据建模到存储架构,全面解读了结构化数据管理的核心技术与实践方法。通过
- flink数据同步mysql到hive_基于Canal与Flink实现数据实时增量同步(二)
背景在数据仓库建模中,未经任何加工处理的原始业务层数据,我们称之为ODS(OperationalDataStore)数据。在互联网企业中,常见的ODS数据有业务日志数据(Log)和业务DB数据(DB)两类。对于业务DB数据来说,从MySQL等关系型数据库的业务数据进行采集,然后导入到Hive中,是进行数据仓库生产的重要环节。如何准确、高效地把MySQL数据同步到Hive中?一般常用的解决方案是批量
- 编程基础:容器
能帮到你的话,就给个赞吧文章目录容器存储数据查询:y=f(x)合并执行流容器:存储数据容器:y=f(x)示例:根据不同的index执行不同的操作查询与分支判断的统一性容器存储数据查询:y=f(x)合并执行流容器:存储数据容器:y=f(x)示例:根据不同的index执行不同的操作查询与分支判断的统一性
- Oracle 存储过程
不辉放弃
oracle数据库大数据开发
Oracle存储过程(StoredProcedure)是一种存储在数据库中的可重用程序单元,它可以接受输入参数、执行一系列操作(如数据查询、更新、事务处理等),但不直接返回值(通过OUT或INOUT参数输出结果)。存储过程常用于封装复杂业务逻辑、实现数据处理流程或批量操作。存储过程的基本结构存储过程由三部分组成:过程头:声明过程名称和参数。声明部分:定义局部变量、游标等。执行部分:包含业务逻辑和事
- 《前端开发者必看:IndexedDB海量数据查询提速秘籍》
程序猿阿伟
数据库oracle前端
IndexedDB作为强大的客户端存储方案,虽提供了大容量存储能力,然而当面对海量数据时,查询速度的优化成为亟待解决的难题,这不仅关乎应用性能,更直接影响用户体验。IndexedDB采用异步操作,以事务为核心,通过对象存储空间(ObjectStore)存储数据。其查询依赖于索引机制,索引类似书籍目录,能快速定位数据位置。例如,在一个包含大量用户信息的数据库中,若要查找特定用户,通过为用户ID建立索
- 数据编织趋势探秘
今天跟大家聊聊数据编织(DataFabric)的概念Gartner在2022年重要战略技术趋势中重点提到数据编织(DataFabric)这个概念,本质上是在谈怎么实现“数据找人而不是人找数据”的愿景为什么DataFabric将会成为一种趋势,为什么越来越多的企业将在未来采用这样的方式进行部署?1、在传统IT时代,无论是早年的“数据仓库”还是近几年的“数据湖”和“大数据”时代,其实数据利用都是集中式
- 浅谈数据管理架构 Data Fabric(数据编织)及其关键特征、落地应用
Aloudata
DataFabric多源异构数据集成数据管理
伴随着企业从数字化转型迈向更先进的数智化运营新阶段,对看数、用数的依赖越来越强,但数据的海量增长给数据管理带来一系列难题,如数据类型和加工链路日益复杂,数据存储和计算引擎更加分散,数据需求响应与数据质量、数据安全风险难以兼顾,数据流通过程中的合规性冲突,以及混合多云环境下的“数据孤岛”等。简言之,进入数智化时代,企业数据管理正变得异常复杂和艰难,传统的数据管理架构往往依赖于单一、物理集中的数据仓库
- 数据仓库 实时计算_如果您的云数据仓库没有分开存储和计算,为什么您会浪费金钱...
weixin_26631359
pythonjava大数据算法leetcode
数据仓库实时计算Notsolongago,establishinganenterprisedatawarehouseinvolvedaprojectthatwouldtakemonthsorevenyears.Thesedays,withcloudcomputing,youcaneasilyregisterforaSaaSorPaaSofferingprovidedbyoneofthecloudv
- 企业如何使用YashanDB实现数据资产最大化?
数据库
在当今数字化时代,企业面临着海量数据的管理与利用挑战,如何优化数据查询速度以提升业务响应效率成为关键问题。查询速度直接影响数据驱动决策的时效性和准确性,进而关系到企业竞争力的提升。本文将基于先进数据库技术,探讨企业如何利用YashanDB的核心架构、存储引擎与优化机制,最大化数据资产的价值。YashanDB的部署架构与灵活应用YashanDB支持三种部署形态:单机部署、分布式集群部署及共享集群部署
- JOIN顺序优化:小表驱动大表的执行原则
数据狐(DataFox)
2025年爬虫实战项目sql性能优化数据库
在数据库查询优化中,特别是在使用SQL语句进行数据查询时,遵循“小表驱动大表”的原则是一种常见且有效的策略。这个原则的核心思想是首先处理小表,然后再与大表进行连接操作,这样可以显著提高查询的效率。下面详细解释这一原则及其背后的原因:为什么“小表驱动大表”有效?减少数据扫描量:当数据库系统执行JOIN操作时,如果先处理小表,那么只需要扫描小表中的每一行与大表中的行进行匹配。这样可以大幅度减少需要扫描
- 企业如何构建基于YashanDB的数据分析系统
数据库
随着大数据时代的到来,企业面临的一个核心技术问题是如何有效、快速地进行数据分析以指导决策。一个重要的性能瓶颈在于数据库的查询速度和存储结构的设计。尤其在处理海量数据时,如何在保证数据查询性能的同时确保数据的准确性和完整性,这问题显得尤为重要。YashanDB作为一个高性能的数据库系统,通过其独特的体系架构和强大的数据存储及访问机制,为企业构建高效的数据分析系统提供了可靠的技术支持。YashanDB
- 了解YashanDB的索引机制,提升查询效率
数据库
在现代数据库系统中,数据的高效查询是一个普遍面临的挑战。查询速度过慢直接影响了应用程序性能和用户体验。尤其在数据量激增的情况下,未能及时优化查询策略,将导致系统性能逐渐下降。索引机制作为关系型数据库查询优化的基石,显著提升了数据检索速度、减少了I/O开销。本文将深入探讨YashanDB的索引机制,帮助用户更好地理解和利用这一关键技术以提升数据查询效率。YashanDB的索引机制概述YashanDB
- Spring AI ETL Pipeline使用指南
超级小忍
SpringAIspring人工智能
前言(Introduction)版本声明:本文基于SpringAI1.0.0版本编写。由于SpringAI目前仍处于活跃开发阶段,API和组件可能在后续版本中发生变化,请注意及时关注官方文档更新以保持兼容性。在当今大数据和人工智能快速发展的背景下,ETL(Extract,Transform,Load)系统已经不再只是简单的数据搬运工。ETL是数据仓库和数据分析流程中的核心环节,它负责将分散的数据从
- 大数据面试题之Hive(1)
小的~~
大数据大数据hivehadoop
说下为什么要使用Hive?Hive的优缺点?Hive的作用是什么?说下Hive是什么?跟数据仓库区别?Hive架构Hive内部表和外部表的区别?为什么内部表的删除,就会将数据全部删除,而外部表只删除表结构?为什么用外部表更好?Hive建表语句?创建表时使用什么分隔符?Hive删除语句外部表删除的是什么?Hive数据倾斜以及解决方案Hive如果不用参数调优,在map和reduce端应该做什么Hive
- 数据仓库之星型模型
james二次元
数据仓库大数据数据仓库
星型模型(StarSchema)是一种常见的数据仓库建模技术,专门用于支持高效的查询和数据分析。它以其简单直观的结构得名,中心是一个事实表(FactTable),周围是多个维度表(DimensionTables),整体结构看起来像一颗星。星型模型的组成部分事实表(FactTable)定义:存储与业务过程相关的数值型度量数据(Measures),如销售额、数量等。特征:主键:由多个外键组成,这些外键
- 深入浅出地讲解数据仓库建设中的业务建模方法论,包括实体联系视图模式、维度建模、星型模型、雪花模型、主题建模等
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介数据分析师经历了从小处收集数据到中大型互联网公司的数据,面对海量数据和种类繁多的数据源头,如何快速准确地进行分析、建模、报表,成为众多数据分析师的共同心愿。而数据建模则是数据分析师的基础功课之一。数据建模作为数据分析师的一项关键技能和素质要求,其目标是将分析获得的数据转化成有意义的信息,并最终呈现给用户,能够帮助企业实现科学管理、优化决策、提升效益和服务能力。随
- 数据库领域数据仓库的星型模型与雪花模型对比
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库数据仓库ai
数据库领域数据仓库的星型模型与雪花模型对比关键词:数据仓库、星型模型、雪花模型、数据建模、对比分析摘要:本文深入探讨了数据库领域数据仓库中的星型模型与雪花模型。首先介绍了数据仓库建模的背景知识,包括目的、预期读者和文档结构等。接着详细阐述了星型模型和雪花模型的核心概念、联系以及各自的架构特点,并通过Mermaid流程图进行直观展示。然后对两种模型的核心算法原理展开分析,结合Python源代码进行说
- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- PyMySQL连接池
去追风,去看海
Pythonmysqlpython
背景在用python写后端服务时候,需要与mysql数据库进行一些数据查询或者插入更新等操作。启动服务后接口运行一切正常,隔了第二天去看服务日志就会报错,问题如下:pymysql.err.OperationalError:(2006,"MySQLserverhasgoneaway(BrokenPipeError(32,'Brokenpipe'))")MySQL默认的wait_timeout时间28
- 数据同步工具对比:Canal、DataX与Flink CDC
智慧源点
大数据flink大数据
在现代数据架构中,数据同步是构建数据仓库、实现实时分析、支持业务决策的关键环节。Canal、DataX和FlinkCDC作为三种主流的数据同步工具,各自有着不同的设计理念和适用场景。本文将深入探讨这三者的技术特点、使用场景以及实践中的差异,帮助开发者根据实际需求选择合适的工具。1.工具概述1.1CanalCanal是阿里巴巴开源的一款基于MySQL数据库增量日志(binlog)解析的组件,主要用于
- Java:动态代理Proxy
十秒耿直拆包选手
JavaProgrammingupjava
动态代理在Java中有着广泛的应用,比如SpringAOP、Hibernate数据查询、测试框架的后端mock、RPC远程调用、Java注解对象获取、日志、用户鉴权、全局性异常处理、性能监控,甚至事务处理等。基本概念假设有一个表示接口的Class对象(有可能只包含一个接口),它的确切类型在编译时无法知道。要想构造一个实现这些接口的类,就需要使用newInstance方法或反射找出这个类的构造器。但
- 数据库的查询
爱吃草莓的土拨鼠️
数据库
一.单表查询1.简单数据查询a.显示指定字段列:使用“*”显示全部字段列;列出字段名显示指定字段列。b.显示字段列别名:使用AS关键字为字段指定别名,方便理解。c.显示计算的列值:通过算术运算符(+-*/%)对字段进行计算,得到新的列值。d.消除重复行:使用DISTINCT参数消除查询结果中的重复行。e.限制行数:利用LIMIT控制返回的行数,可指定偏移量和行数。f.排序:ORDERBY子句按指定
- SQLite 数据库在大数据分析中的应用潜力
数据库管理艺术
数据库sqlite数据分析ai
SQLite数据库在大数据分析中的应用潜力关键词:SQLite、大数据分析、轻量级数据库、嵌入式数据库、数据仓库、OLAP、性能优化摘要:本文深入探讨了SQLite这一轻量级嵌入式数据库在大数据分析领域的应用潜力。我们将从SQLite的核心架构出发,分析其在大数据场景下的优势和限制,并通过实际案例展示如何通过优化策略和扩展技术使SQLite能够处理大规模数据集。文章包含性能对比测试、优化技巧和实际
- 《Redis高并发优化策略与规范清单:从开发到运维的全流程指南》
猕员桃
redis运维数据库
Redis高并发优化策略与规范清单:从开发到运维的全流程指南在互联网应用的后端架构中,Redis凭借其高性能、高并发的特性,成为缓存和数据存储的首选方案。无论是电商抢购、社交平台的点赞计数,还是在线旅游平台的实时数据查询,Redis都在支撑着海量请求的快速处理。然而,随着业务规模的扩大和流量的激增,Redis在高并发场景下也面临诸多挑战,如性能瓶颈、内存溢出、缓存雪崩等。为了确保Redis在高并发
- 什么是 QueryGPT?智能查询工具如何重塑信息检索的未来?
镜舟科技
StarRocksQueryGPT数据查询数据分析多模态交互
从客户行为数据到供应链信息,从市场趋势到内部运营指标,这些数据蕴含着巨大的商业价值。然而,数据量的激增也带来了前所未有的检索挑战:如何在海量信息中快速定位所需数据?如何确保查询结果的准确性和时效性?据统计,75%的企业正受困于低效的查询工具,这已成为阻碍企业数字化转型的关键痛点。传统的数据查询方式主要依赖SQL语句或特定的查询语言,这要求用户具备专业的编程知识和对数据结构的深入理解。即使对于数据分
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin