深入理解链表:一种动态的线性数据结构

文章目录

  • 前言
    • 1. 概述
    • 2. 单向链表
    • 3. 单向链表(带哨兵)
    • 4. 双向链表(带哨兵)
    • 5. 环形链表(带哨兵)
    • 6. 结语

前言

链表是我们在日常编程中经常使用的一种数据结构,它相比于数组具有更好的动态性能。但是,对链表的深入理解需要我们掌握其内在的逻辑结构和操作原理。本文将带领读者一起深入理解链表的概念、种类、特性及其在Java中的具体实现方式。

我们将从最简单的单向链表开始,探讨如何通过Java代码实现它的主要操作,如添加、遍历、插入和删除节点等。然后,我们会讨论更复杂的链表类型,如带有哨兵节点的链表,双向链表和环形链表,分析它们的优缺点以及适用的场景。

1. 概述

链表是一种基本的数据结构,用于维护数据元素的线性集合。链表中的元素(通常称为节点)不一定在内存中是连续存储的。相反,每个元素都包含了指向其下一个元素的指针或引用。这种数据结构的特性,使得插入或删除元素的操作相对于数组等连续存储的数据结构来说,更加方便和高效。

链表的类型主要有以下几种:
深入理解链表:一种动态的线性数据结构_第1张图片

  • 单向链表,每个元素只知道其下一个元素是谁

image-20221110083407176

  • 双向链表,每个元素知道其上一个元素和下一个元素

image-20221110083427372

  • 循环链表,通常的链表尾节点 tail 指向的都是 null,而循环链表的 tail 指向的是头节点 head

image-20221110083538273

链表内还有一种特殊的节点称为哨兵(Sentinel)节点,也叫做哑元( Dummy)节点,它不存储数据,通常用作头尾,用来简化边界判断,如下图所示

image-20221110084611550
随机访问性能

链表的随机访问性能并不强大。如果需要根据索引查找特定的元素,必须从头节点开始,逐一遍历节点直到找到目标节点。因此,此操作的时间复杂度为 O ( n ) O(n) O(n),其中 n n n 为链表的长度。

插入或删除性能

链表在插入或删除节点时的性能主要取决于操作的位置:

  • 在头节点进行插入或删除:由于头节点可以被立即访问,因此在链表的起始位置进行插入或删除操作的时间复杂度为 O ( 1 ) O(1) O(1)

  • 在尾节点进行插入或删除:如果已知尾节点(即尾节点的引用已经被保存),则在链表的结束位置进行插入或删除操作的时间复杂度为 O ( 1 ) O(1) O(1)。然而,如果尾节点未知,我们需要从头节点开始遍历链表以找到尾节点,这使得时间复杂度升至 O ( n ) O(n) O(n)

  • 在中间位置进行插入或删除:这涉及两个步骤,首先需要找到目标位置(这部分的时间复杂度为 O ( n ) O(n) O(n)),然后进行实际的插入或删除操作(这部分的时间复杂度为 O ( 1 ) O(1) O(1))。因此,总的时间复杂度为 O ( n ) + O ( 1 ) = O ( n ) O(n) + O(1) = O(n) O(n)+O(1)=O(n)

2. 单向链表

根据单向链表的定义,首先定义一个存储 value 和 next 指针的类 Node,和一个描述头部节点的引用

public class SinglyLinkedList {
    
    private Node head; // 头部节点
    
    private static class Node { // 节点类
        int value;
        Node next;

        public Node(int value, Node next) {
            this.value = value;
            this.next = next;
        }
    }
}
  • Node 定义为内部类,是为了对外隐藏实现细节,没必要让类的使用者关心 Node 结构
  • 定义为 static 内部类,是因为 Node 不需要与 SinglyLinkedList 实例相关,多个 SinglyLinkedList实例能共用 Node 类定义

头部添加

public class SinglyLinkedList {
    // ...
    public void addFirst(int value) {
		this.head = new Node(value, this.head);
    }
}
  • 如果 this.head == null,新增节点指向 null,并作为新的 this.head
  • 如果 this.head != null,新增节点指向原来的 this.head,并作为新的 this.head
    • 注意赋值操作执行顺序是从右到左

while 遍历

public class SinglyLinkedList {
    // ...
    public void loop() {
        Node curr = this.head;
        while (curr != null) {
            // 做一些事
            curr = curr.next;
        }
    }
}

for 遍历

public class SinglyLinkedList {
    // ...
    public void loop() {
        for (Node curr = this.head; curr != null; curr = curr.next) {
            // 做一些事
        }
    }
}
  • 以上两种遍历都可以把要做的事以 Consumer 函数的方式传递进来
    • Consumer 的规则是一个参数无返回值,因此像 System.out::println 方法等都是 Consumer
    • 调用 Consumer 时,将当前节点 curr.value 作为参数传递给它

迭代器遍历

public class SinglyLinkedList implements Iterable<Integer> {
    // ...
    private class NodeIterator implements Iterator<Integer> {
        Node curr = head;
        
        public boolean hasNext() {
            return curr != null;
        }

        public Integer next() {
            int value = curr.value;
            curr = curr.next;
            return value;
        }
    }
    
    public Iterator<Integer> iterator() {
        return new NodeIterator();
    }
}
  • hasNext 用来判断是否还有必要调用 next
  • next 做两件事
    • 返回当前节点的 value
    • 指向下一个节点
  • NodeIterator 要定义为非 static 内部类,是因为它与 SinglyLinkedList 实例相关,是对某个 SinglyLinkedList 实例的迭代

递归遍历

public class SinglyLinkedList implements Iterable<Integer> {
    // ...
    public void loop() {
        recursion(this.head);
    }

    private void recursion(Node curr) {
        if (curr == null) {
            return;
        }
        // 前面做些事
        recursion(curr.next);
        // 后面做些事
    }
}

尾部添加

public class SinglyLinkedList {
    // ...
    private Node findLast() {
        if (this.head == null) {
            return null;
        }
        Node curr;
        for (curr = this.head; curr.next != null; ) {
            curr = curr.next;
        }
        return curr;
    }
    
    public void addLast(int value) {
        Node last = findLast();
        if (last == null) {
            addFirst(value);
            return;
        }
        last.next = new Node(value, null);
    }
}
  • 注意,找最后一个节点,终止条件是 curr.next == null
  • 分成两个方法是为了代码清晰,而且 findLast() 之后还能复用

尾部添加多个

public class SinglyLinkedList {
    // ...
	public void addLast(int first, int... rest) {
        
        Node sublist = new Node(first, null);
        Node curr = sublist;
        for (int value : rest) {
            curr.next = new Node(value, null);
            curr = curr.next;
        }
        
        Node last = findLast();
        if (last == null) {
            this.head = sublist;
            return;
        }
        last.next = sublist;
    }
}
  • 先串成一串 sublist
  • 再作为一个整体添加

根据索引获取

public class SinglyLinkedList {
    // ...
	private Node findNode(int index) {
        int i = 0;
        for (Node curr = this.head; curr != null; curr = curr.next, i++) {
            if (index == i) {
                return curr;
            }
        }
        return null;
    }
    
    private IllegalArgumentException illegalIndex(int index) {
        return new IllegalArgumentException(String.format("index [%d] 不合法%n", index));
    }
    
    public int get(int index) {
        Node node = findNode(index);
        if (node != null) {
            return node.value;
        }
        throw illegalIndex(index);
    }
}
  • 同样,分方法可以实现复用

插入

public class SinglyLinkedList {
    // ...
	public void insert(int index, int value) {
        if (index == 0) {
            addFirst(value);
            return;
        }
        Node prev = findNode(index - 1); // 找到上一个节点
        if (prev == null) { // 找不到
            throw illegalIndex(index);
        }
        prev.next = new Node(value, prev.next);
    }
}
  • 插入包括下面的删除,都必须找到上一个节点

删除

public class SinglyLinkedList {
    // ...
	public void remove(int index) {
        if (index == 0) {
            if (this.head != null) {
                this.head = this.head.next;
                return;
            } else {
                throw illegalIndex(index);
            }
        }
        Node prev = findNode(index - 1);
        Node curr;
        if (prev != null && (curr = prev.next) != null) {
            prev.next = curr.next;
        } else {
            throw illegalIndex(index);
        }
    }
}
  • 第一个 if 块对应着 removeFirst 情况
  • 最后一个 if 块对应着至少得两个节点的情况
    • 不仅仅判断上一个节点非空,还要保证当前节点非空

3. 单向链表(带哨兵)

观察之前单向链表的实现,发现每个方法内几乎都有判断是不是 head 这样的代码,能不能简化呢?

用一个不参与数据存储的特殊 Node 作为哨兵,它一般被称为哨兵或哑元,拥有哨兵节点的链表称为带头链表

public class SinglyLinkedListSentinel {
    // ...
    private Node head = new Node(Integer.MIN_VALUE, null);
}
  • 具体存什么值无所谓,因为不会用到它的值

加入哨兵节点后,代码会变得比较简单,先看几个工具方法

public class SinglyLinkedListSentinel {
    // ...
    
    // 根据索引获取节点
    private Node findNode(int index) {
        int i = -1;
        for (Node curr = this.head; curr != null; curr = curr.next, i++) {
            if (i == index) {
                return curr;
            }
        }
        return null;
    }
    
    // 获取最后一个节点
    private Node findLast() {
        Node curr;
        for (curr = this.head; curr.next != null; ) {
            curr = curr.next;
        }
        return curr;
    }
}
  • findNode 与之前类似,只是 i 初始值设置为 -1 对应哨兵,实际传入的 index 也是 [ − 1 , ∞ ) [-1, \infty) [1,)
  • findLast 绝不会返回 null 了,就算没有其它节点,也会返回哨兵作为最后一个节点

这样,代码简化为

public class SinglyLinkedListSentinel {
    // ...
    
    public void addLast(int value) {
        Node last = findLast();
        /*
        改动前
        if (last == null) {
            this.head = new Node(value, null);
            return;
        }
        */
        last.next = new Node(value, null);
    }
    
    public void insert(int index, int value) {
        /*
        改动前
        if (index == 0) {
            this.head = new Node(value, this.head);
            return;
        }
        */
        // index 传入 0 时,返回的是哨兵
        Node prev = findNode(index - 1);
        if (prev != null) {
            prev.next = new Node(value, prev.next);
        } else {
            throw illegalIndex(index);
        }
    }
    
    public void remove(int index) {
        /*
        改动前
        if (index == 0) {
            if (this.head != null) {
                this.head = this.head.next;
                return;
            } else {
                throw illegalIndex(index);
            }
        }
        */
        // index 传入 0 时,返回的是哨兵
        Node prev = findNode(index - 1);
        Node curr;
        if (prev != null && (curr = prev.next) != null) {
            prev.next = curr.next;
        } else {
            throw illegalIndex(index);
        }
    }
    
    public void addFirst(int value) {
        /*
        改动前
        this.head = new Node(value, this.head);
        */
		this.head.next = new Node(value, this.head.next);
        // 也可以视为 insert 的特例, 即 insert(0, value);
    }
}
  • 对于删除,前面说了【最后一个 if 块对应着至少得两个节点的情况】,现在有了哨兵,就凑足了两个节点

4. 双向链表(带哨兵)

public class DoublyLinkedListSentinel implements Iterable<Integer> {

    private final Node head;
    private final Node tail;

    public DoublyLinkedListSentinel() {
        head = new Node(null, 666, null);
        tail = new Node(null, 888, null);
        head.next = tail;
        tail.prev = head;
    }

    private Node findNode(int index) {
        int i = -1;
        for (Node p = head; p != tail; p = p.next, i++) {
            if (i == index) {
                return p;
            }
        }
        return null;
    }

    public void addFirst(int value) {
        insert(0, value);
    }

    public void removeFirst() {
        remove(0);
    }

    public void addLast(int value) {
        Node prev = tail.prev;
        Node added = new Node(prev, value, tail);
        prev.next = added;
        tail.prev = added;
    }

    public void removeLast() {
        Node removed = tail.prev;
        if (removed == head) {
            throw illegalIndex(0);
        }
        Node prev = removed.prev;
        prev.next = tail;
        tail.prev = prev;
    }

    public void insert(int index, int value) {
        Node prev = findNode(index - 1);
        if (prev == null) {
            throw illegalIndex(index);
        }
        Node next = prev.next;
        Node inserted = new Node(prev, value, next);
        prev.next = inserted;
        next.prev = inserted;
    }

    public void remove(int index) {
        Node prev = findNode(index - 1);
        if (prev == null) {
            throw illegalIndex(index);
        }
        Node removed = prev.next;
        if (removed == tail) {
            throw illegalIndex(index);
        }
        Node next = removed.next;
        prev.next = next;
        next.prev = prev;
    }

    private IllegalArgumentException illegalIndex(int index) {
        return new IllegalArgumentException(
                String.format("index [%d] 不合法%n", index));
    }

    @Override
    public Iterator<Integer> iterator() {
        return new Iterator<Integer>() {
            Node p = head.next;

            @Override
            public boolean hasNext() {
                return p != tail;
            }

            @Override
            public Integer next() {
                int value = p.value;
                p = p.next;
                return value;
            }
        };
    }

    static class Node {
        Node prev;
        int value;
        Node next;

        public Node(Node prev, int value, Node next) {
            this.prev = prev;
            this.value = value;
            this.next = next;
        }
    }
}

5. 环形链表(带哨兵)

双向环形链表带哨兵,这时哨兵既作为头,也作为尾

深入理解链表:一种动态的线性数据结构_第2张图片

深入理解链表:一种动态的线性数据结构_第3张图片

深入理解链表:一种动态的线性数据结构_第4张图片

深入理解链表:一种动态的线性数据结构_第5张图片

参考实现

public class DoublyLinkedListSentinel implements Iterable<Integer> {

    @Override
    public Iterator<Integer> iterator() {
        return new Iterator<>() {
            Node p = sentinel.next;

            @Override
            public boolean hasNext() {
                return p != sentinel;
            }

            @Override
            public Integer next() {
                int value = p.value;
                p = p.next;
                return value;
            }
        };
    }

    static class Node {
        Node prev;
        int value;
        Node next;

        public Node(Node prev, int value, Node next) {
            this.prev = prev;
            this.value = value;
            this.next = next;
        }
    }

    private final Node sentinel = new Node(null, -1, null); // 哨兵

    public DoublyLinkedListSentinel() {
        sentinel.next = sentinel;
        sentinel.prev = sentinel;
    }

    /**
     * 添加到第一个
     * @param value 待添加值
     */
    public void addFirst(int value) {
        Node next = sentinel.next;
        Node prev = sentinel;
        Node added = new Node(prev, value, next);
        prev.next = added;
        next.prev = added;
    }

    /**
     * 添加到最后一个
     * @param value 待添加值
     */
    public void addLast(int value) {
        Node prev = sentinel.prev;
        Node next = sentinel;
        Node added = new Node(prev, value, next);
        prev.next = added;
        next.prev = added;
    }
    
    /**
     * 删除第一个
     */
    public void removeFirst() {
        Node removed = sentinel.next;
        if (removed == sentinel) {
            throw new IllegalArgumentException("非法");
        }
        Node a = sentinel;
        Node b = removed.next;
        a.next = b;
        b.prev = a;
    }

    /**
     * 删除最后一个
     */
    public void removeLast() {
        Node removed = sentinel.prev;
        if (removed == sentinel) {
            throw new IllegalArgumentException("非法");
        }
        Node a = removed.prev;
        Node b = sentinel;
        a.next = b;
        b.prev = a;
    }

    /**
     * 根据值删除节点
     * 

假定 value 在链表中作为 key, 有唯一性

* @param value 待删除值 */
public void removeByValue(int value) { Node removed = findNodeByValue(value); if (removed != null) { Node prev = removed.prev; Node next = removed.next; prev.next = next; next.prev = prev; } } private Node findNodeByValue(int value) { Node p = sentinel.next; while (p != sentinel) { if (p.value == value) { return p; } p = p.next; } return null; } }

6. 结语

通过对链表的深入学习和理解,我们可以看到,链表并不只是一个简单的数据结构,它在解决许多编程问题上具有独特的优势。学会有效地使用和优化链表,可以帮助我们写出更高效、更易维护的代码。

希望本文能够帮助读者更好地理解链表这一数据结构,并能在实际编程中灵活运用。链表只是数据结构中的一小部分,接下来我们将继续深入探讨其他更复杂的数据结构,如树、图等。让我们共同期待!

你可能感兴趣的:(数据结构,数据结构,链表)