- C++设计模式:简单工厂、工厂方法、抽象工厂
起个别名
C++算法c++
1.工厂模式的特点在我们现实生活中,买馒头和自己蒸馒头、去饭店点一份大盘鸡和自己养鸡,杀鸡,做大盘鸡,这是全然不同的两种体验:自己做麻烦,而且有失败的风险,需要自己承担后果。买现成的,可以忽略制作细节,方便快捷并且无风险,得到的肯定是美味的食物。对于后者,就相当于是一个加工厂,通过这个工厂我们就可以得到想要的东西,在程序设计中,这种模式就叫做工厂模式,工厂生成出的产品就是某个类的实例,也就是对象。
- 什么是RFM模型
走过冬季
学习笔记大数据数据分析
RFM模型是客户价值分析中一种经典且实用的量化模型,它通过三个关键维度评估用户价值,帮助企业识别最有价值的客户群体。名称RFM由三个核心指标的英文首字母组成:R(Recency)-最近一次消费时间定义:用户上一次发生交易行为距今的时间长度(如多少天前)。意义:衡量用户的活跃度和流失风险。R值越小(最近有消费),说明用户越活跃,流失风险越低;R值越大(很久没消费),用户流失风险越高。母婴场景示例:一
- Spring WebFlux 响应式编程原理与实战指南
SpringWebFlux响应式编程原理与实战指南一、技术背景与应用场景随着微服务与高并发的迅速发展,传统的阻塞式编程模型在处理大量并发请求时容易导致线程资源耗尽、响应延迟增高。SpringWebFlux基于ReactiveStreams规范,通过非阻塞、背压机制,实现高吞吐、低延迟的Web服务。典型应用场景包括:实时数据推送:WebSocket或Server-SentEvents场景。高并发AP
- 24GB GPU 中的 DeepSeek R1:Unsloth AI 针对 671B 参数模型进行动态量化
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekollama
简介最初的DeepSeekR1是一个拥有6710亿个参数的语言模型,UnslothAI团队对其进行了动态量化,将模型大小减少了80%(从720GB减少到131GB),同时保持了强大的性能。当添加模型卸载功能时,该模型可以在24GBVRAM下以低令牌/秒的推理速度运行。推荐文章《本地构建AI智能分析助手之01快速安装,使用PandasAI和Ollama进行数据分析,用自然语言向你公司的数据提问为决策
- Llama-Omni会说话的人工智能“语音到语音LLM” 利用低延迟、高质量语音转语音 AI 彻底改变对话方式(教程含源码)
知识大胖
NVIDIAGPU和大语言模型开发教程llama人工智能nvidiallm
介绍“单靠技术是不够的——技术与文科、人文学科的结合,才能产生让我们心花怒放的成果。”——史蒂夫·乔布斯近年来,人机交互领域发生了重大变化,尤其是随着ChatGPT、GPT-4等大型语言模型(LLM)的出现。虽然这些模型主要基于文本,但人们对语音交互的兴趣日益浓厚,以使人机对话更加无缝和自然。然而,实现语音交互而不受语音转文本处理中常见的延迟和错误的影响仍然是一个挑战。关键字:Llama-Omni
- 2025年UDP洪水攻击防护实战全解析:从T级流量清洗到AI智能防御
上海云盾商务经理杨杨
udp人工智能网络协议
一、2025年UDP洪水攻击的新特征AI驱动的自适应攻击攻击者利用生成式AI动态调整UDP报文特征(如载荷内容、发送频率),攻击流量与正常业务流量差异率低至0.5%,传统指纹过滤规则失效。反射放大攻击升级黑客通过劫持物联网设备(如摄像头、传感器)构建僵尸网络,利用DNS/NTP协议漏洞发起反射攻击,1Gbps请求可放大至50-500倍流量,峰值突破8Tbps。混合协议打击70%的UDP攻击伴随TC
- LLaMA-Omni 深度解析:打开通往无缝人机语音交互的大门
kakaZhui
前沿多模态大模型:论文与实战llama交互LLMTTS语音识别语音合成人工智能
一、引言:语音交互大模型今天我们来看语音交互大模型LLaMA-Omni,它由中国科学院计算技术研究所的研究者们推出,是一个基于强大的Llama-3.1-8B-Instruct构建的语音语言模型。LLaMA-Omni不仅实现了低至226ms的惊人交互延迟,还能同时生成高质量的文本与语音回复,真正意义上让大语言模型(LLM)具备了“听说”的能力。这篇博客将带你由浅入深,全方位地探索LLaMA-Omni
- (一)OpenCV——噪声去除(降噪)
高斯滤波器(针对高斯噪声)高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。常见的高斯噪声包括起伏噪声、宇宙噪声、热噪声和散粒噪声等等。高斯滤波(Gaussianfilter)包含许多种,包括低通、带通和高通等,我们通常图像上说的高斯滤波,指的是高斯模糊(GaussianBlur),是一种高斯低通滤波,其过滤调图像高频成分(图像细节部分),保留图像低频成分(图像平滑区域),所以对图
- STM32与FPGA用FMC进行通讯
weixin_43554366
单片机stm32fpga物联网人工智能
stm32正常按读写SDRAM进行配置,FPGA进行信号采集。FPGA信号采集发现SDWNE是高但H7手册上时序显示是低,造成无法像FPGA模拟的SDRAM无法写入数据FPGA采集信号应该在时钟下降沿,上升沿采集,数据会发生错误。
- 从原理到实战:ISP(图像信号处理器)深度解析与应用指南
从原理到实战:ISP(图像信号处理器)深度解析与应用指南摘要本文系统解析ISP(ImageSignalProcessor,图像信号处理器)的核心功能,详细拆解其工作流程(RAW处理→黑电平校正→AWB→3DNR→Defog→Gamma),深入解读关键参数(吞吐量、WDR类型、低照度性能)的技术意义,并详解寄存器表与在线调试工具的配置方法。通过表格对比、分点解析等方式,从基础原理到工程实践,覆盖IS
- AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路
AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路一、医疗领域:AI驱动的精准诊疗与效率提升1.医学影像诊断AI算法通过深度学习技术,已实现对X光、CT、MRI等影像的快速分析,辅助医生检测癌症、骨折等疾病。例如,GoogleDeepMind的AI系统在乳腺癌筛查中,误检率比人类专家低9.4%;中国的推想医疗AI系统可在20秒内完成肺部CT扫描分析,为急诊救治争取黄金时间。2.药物研发传统药
- 单片机原理及应用——C51语言版(第2版,林立、张俊亮编著)课后习题及答案
第一章习题1.1单项选择题(1)单片机又称为单片微计算机,最初的英文缩写是____。答案(D)A.MCPB.CPUC.DPJD.SCM(2)Intel公司的MCS-51系列单片机是______的单片机。答案(C)A.1位B.4位C.8位D.16位(3)单片机的特点里没有包括在内的是______。答案(C)A.集成度高B.功耗低C.密封性强D.性价比高(4)单片机的发展趋势中没有包括的是______
- 新品上架后,亚马逊卖家如何高效投放广告
观察猿
人工智能
“新品上架后应该先开自动广告还是手动广告?”“如何找到高转化低竞争的关键词?”“为什么广告花费很高却不出单?”“竞品ASIN投放真的能带来精准流量吗?”“怎样系统性地降低ACOS?”这些问题背后反映的正是亚马逊广告投放的核心痛点——如何在有限的预算内获取精准流量并实现高效转化。作为经历过同样困惑的卖家,我想分享一些实战经验,特别是我们团队通过智能工具实现广告优化的真实案例。亚马逊广告的底层逻辑亚马
- 显卡GPU的架构和工作原理
InnoLink_1024
芯片人工智能AGI架构硬件架构人工智能
显卡GPU(图形处理单元)是专为并行计算和图形处理设计的芯片,广泛应用于游戏、科学计算、人工智能和数据中心等领域。以下详细介绍GPU的架构和工作原理,涵盖核心组件、计算流程和关键技术,尽量简洁清晰。一、GPU架构概述GPU架构与CPU不同,专注于高并行计算,适合处理大量简单、重复的任务。其核心设计目标是最大化吞吐量,而非单任务的低延迟。主流GPU厂商(如NVIDIA、AMD、Intel)架构虽有差
- 安防监控漏报频发?陌讯实时检测算法实测召回率98%
2501_92487721
目标跟踪计算机视觉人工智能算法
一、开篇痛点:安防监控的检测难题在夜间低光、遮挡、小目标等复杂场景下,传统YOLO系列算法常出现漏检(FN)和误检(FP)。某安防厂商测试数据显示:当目标像素<50×50时,开源模型召回率骤降至65%以下。二、技术解析:陌讯算法的三重创新陌讯视觉算法通过多尺度特征融合+自适应光照补偿提升鲁棒性:动态感受野机制在Backbone中引入可变形卷积(DeformableConv),公式表示为:y(p)=
- Manus AI与多语言手写识别
ManusAI与多语言手写识别背景与概述手写识别技术的发展现状与挑战ManusAI的核心技术与应用场景多语言手写识别的市场需求与难点ManusAI的技术架构深度学习在手写识别中的应用多语言支持的模型设计数据预处理与特征提取方法多语言手写识别的关键挑战不同语言字符的多样性处理上下文语义与书写风格适应性低资源语言的训练数据获取解决方案与优化策略迁移学习在多语言任务中的应用端到端模型的优化与轻量化用户反
- 电子电气架构 --- 车载芯片SOC简介
汽车电子实验室
车辆信息安全思考架构职场和发展网络协议电子电气架构实时系统评价的概述车载芯片SOC简介
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是系统思考、大胆设计、小心求证;三是“一张纸制度”,也就是无论多么复杂的工作内容,要在一张纸上描述清楚;四是要坚决反对虎头蛇尾,反对繁文缛节,反对老
- 【FR801xH】富芮坤FR801xH之全功能按键案例
沧海一笑-dj
物联网专栏富芮坤FR801xH按键单击双击长按超长按
00.目录文章目录00.目录01.FR801xH概述02.FR801xH功能框图03.Button模块概述04.Button模块核心设计思想05.Button模块系统架构概览06.Button模块数据结构详解07.状态机引擎解析08.定时器系统设计09.事件处理流程10.程序实现参考源码11.测试示例12.附录01.FR801xH概述FR801xH系列芯片是面向SOC(片上系统),易于快速开发的低
- 【AXI】读重排序深度
oahrzvq
总线AMBAAXI
我们以DDR4存储控制器为例,设计一个读重排序深度为3的具体场景,展示从设备如何利用3级队列优化访问效率:基础设定从设备类型:DDR4存储控制器(支持4个存储体Bank0-Bank3)读重排序深度:3(允许同时跟踪3个未完成读请求)访问延迟特征:Bank激活后访问:3周期(低延迟)Bank预充电后访问:7周期(高延迟)主机请求序列(按时间顺序发送):时间点请求标识ARID值目标Bank地址描述T0
- HarmonyOS从入门到精通:动画设计与实现之二 - 属性动画深度实践与场景落地
属性动画作为鸿蒙系统中最基础也最常用的动画类型,其核心价值在于通过属性值的渐进式变化实现流畅的视觉过渡。相比其他动画类型,属性动画具有接入成本低、适用范围广、与业务逻辑耦合度低等优势,是开发者打造生动界面的首选工具。本文将从基础原理出发,通过实战案例详解属性动画的进阶用法、性能优化及典型场景落地,帮助开发者掌握属性动画的核心技巧。一、属性动画的工作原理与核心特性属性动画的本质是**“数据驱动视觉变
- 代码质量-圈复杂度及其计算
damon2636
圈复杂度(CyclomaticComplexity)是一种代码复杂度的衡量标准。它可以用来衡量一个模块判定结构的复杂程度,数量上表现为独立现行路径条数,也可理解为覆盖所有的可能情况最少使用的测试用例数。圈复杂度大说明程序代码的判断逻辑复杂,可能质量低且难于测试和维护。程序的可能错误和高的圈复杂度有着很大关系。下面这个实例中,单元测试的覆盖率可以达到100%,但是很容易发现这其中已经漏掉了一个NPE
- 医疗票据查验原理-财政票管理-发票查验接口流程解析
wt_cs
发票识别大数据人工智能
在医疗行业数字化转型的背景下,医疗发票的查验与识别已成为医疗机构、企事业单位及金融机构财务管理的重要环节。医疗发票作为医疗服务消费的重要凭证,其真实性与准确性直接关系到医保报销、财务审计及税务管理等多个环节。随着医疗票据电子化进程的加速,传统人工查验方式已难以满足海量票据处理的需求,医疗票据查验接口与医疗票据识别接口应用而生。传统人工查验面临以下几大挑战:1、票据量大、人工处理效率低:通过人工核验
- YOLOv11模型轻量化挑战技术文章大纲
程序猿全栈の董(董翔)
githubYOLOv11
模型轻量化的背景与意义目标检测模型YOLOv11的性能与应用场景轻量化的必要性:边缘设备部署、实时性需求、计算资源限制轻量化面临的挑战:精度与速度的权衡、模型压缩方法的选择YOLOv11的轻量化技术方向网络结构优化:深度可分离卷积、分组卷积、瓶颈设计模型剪枝:结构化剪枝与非结构化剪枝策略知识蒸馏:教师-学生模型框架与特征匹配方法量化与低比特压缩:FP16/INT8量化与二值化网络轻量化实现的具体方
- 跨集群异构推理系统协同调度实战:边缘-中心联合部署与多租户算力调度架构解析
观熵
大模型高阶优化技术专题架构人工智能
跨集群异构推理系统协同调度实战:边缘-中心联合部署与多租户算力调度架构解析关键词跨集群调度、边缘推理、GPU-NPU协同、KubeFed、资源分域、任务下发、多租户隔离、MLOps联邦调度、推理闭环、负载均衡摘要在AI推理系统进入产业级部署阶段后,模型服务逐步从中心化集群向边缘设备、跨地理分布式节点延伸,形成典型的“中心+边缘”异构多集群形态。为实现高效资源利用与低时延响应,推理系统需要支持节点异
- 构建高性能WebSocket服务端:Spring Boot实战指南
张道宁
网络通信websocketspringboot网络协议
一、WebSocket核心概念与传统HTTP对比HTTP:单向通信(请求-响应),无状态,高开销WebSocket:双向全双工通信,持久连接,低延迟(≈1:1000开销比)适用场景:实时聊天、金融报价、协同编辑、游戏对战关键协议机制ClientServerHTTPUpgradeRequest101SwitchingProtocols双向二进制帧传输数据帧(payload掩码处理)数据帧(纯文本/二
- 【SpringBoot】Spring Boot配置优先级详解
Pota-to成长日记
springboot后端java
SpringBoot配置优先级详解SpringBoot的配置优先级决定了不同配置源之间的覆盖关系,遵循高优先级配置覆盖低优先级的原则。以下是详细的优先级排序及配置方法说明:一、配置优先级从高到低排序命令行参数优先级最高,通过--key=value形式传递,直接覆盖其他配置。示例:java-jarapp.jar--server.port=8081Java系统属性(-D参数)通过JVM参数设置,优先级
- KGF75N65KDF KEC 650V/75A超结MOSFET 高频高效电源转换IC标杆!
KGF75N65KDF-U/H(KEC)产品解析一、产品定位KGF75N65KDF-U/H是韩国电子(KEC)推出的650V/75A超结MOSFET(SuperJunctionMOSFET),采用TO-247封装,专为高频高效电源转换设计,具有低导通损耗、高开关速度特性,适用于工业电源、新能源及电动汽车等高功率场景。二、核心功能与参数特性参数/性能电压/电流650V耐压/75A连续电流(@25°C
- 电商客服迭代的必然选择:智能客服如何重构用户服务生态?
探域科技
人工智能机器人大数据
在电商行业高速发展的今天,每天都有数以亿计的用户咨询、订单处理需求涌入商家客服系统。传统人工客服模式面临着响应效率低、人力成本高、服务标准难统一等痛点,而智能客服的出现,正在成为电商客服迭代升级的必然选择。它以技术为驱动,悄然重构着整个用户服务生态。一、电商客服迭代的迫切需求过去,消费者咨询商品信息、处理售后问题,都依赖人工客服一对一沟通。在购物节等流量高峰时段,人工客服常常应接不暇,用户排队等待
- 单点模式与集群
奔跑的鹅鹅鹅
solr集群
单点模式:javaee项目部署在一台tomcat上,所有的请求,都由这一台机器处理,问题很大。1.并发处理能力因为单点服务器的性能有限制,所以单台tomcat的最大连接数有限。2.容错率低,一旦服务器故障,项目无法正常运行。3.单独的服务器计算能力低,无法完成复杂的海量数据计算。集群:多台服务器集中,实现相同的项目。每台服务器存在的作用缓解高并发,发生故障转移服务到另外的空闲服务器上。1.高可用性
- 2.4G收发SOC芯片 XL2417D,集成高性能2.4GHz射频收发器、32位MCU
XL2417D芯片是一款低功耗、高性能和高度集成的2.4GSoC芯片,带有蓝牙5.2BLE和2.4G收发器。它集成了高性能2.4GHz射频收发器、丰富的基带功能、32位MCU和各种外围IO。它支持128KB的flash和8KB的RAM,以实现可编程协议和配置文件,支持定制应用程序。XL2417D采用先进的55nmCMOS低泄漏工艺制造,降低BOM成本的同时简化了整个系统设计。丰富的外围设备包括10
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round