Lion:闭源大语言模型的对抗性蒸馏

通过调整 70k 指令跟踪数据,Lion (7B) 可以实现 ChatGPT 95% 的能力!

消息

我们目前正在致力于训练更大尺寸的版本(如果可行的话,13B、33B 和 65B)。感谢您的耐心等待。

  • **[2023年6月10日]**我们发布了微调过程中解决OOM的说明,请在训练过程中查看。
  • **[2023年5月26日]**我们发布了模型权重。看看7B型号!
  • **[2023年5月25日]**我们发布了在线演示,在这里尝试我们的模型!
  • **[2023年5月23日]**我们发布了训练和推理的代码。

内容

文章目录

        • 通过调整 70k 指令跟踪数据,Lion (7B) 可以实现 ChatGPT 95% 的能力!
    • 消息
    • 内容
    • 概述
    • 在线演示
    • 恢复Lion权重
    • 推理
    • 培训流程
      • 1、模仿阶段
        • 1.1 获取老师对Train Pool的回复
        • 1.2 根据教师对训练池的反应对学生进行指令调整
      • 2. 歧视阶段
        • 2.1 获取老师对Cache Pool的响应
        • 2.2 获取学生对缓存池的回答
        • 2.3 要求裁判根据老师和学生的回答质量输出两个分数
        • 2.4 区分硬指令和简单指令
      • 3. 生成阶段
        • 3.1 生成新的硬指令
        • 3.2 生成新的简单指令
    • 评估
      • 使用 GPT-4 自动评估
      • 具有对齐标准的人类评估
    • 引文
    • 免责声明

概述

Lion:闭源大语言模型的对抗性蒸馏_第1张图片

我们的对抗性蒸馏框架的高级概述,其中我们基于高级闭源 LLM 制作了一个紧凑的学生 LLM,该 LLM 服务于三个角色:教师**、裁判员生成器**。从左到右,迭代分为三个阶段:

  1. 模仿阶段*,*使学生的反应与教师的反应保持一致;
  2. 识别硬样本的辨别阶段;
  3. 生成阶段,用于生成新的硬样本*,*以升级向学生模型提出的挑战。

在线演示

我们将提供最新型号供您尽可能长时间地试用。您可以向 Lion 提出一些问题,我们很高兴听到您的反馈!

演示链接(72小时后过期,因此我们会定期更新链接)

Lion:闭源大语言模型的对抗性蒸馏_第2张图片

由于训练数据是英文指令示例,因此您最好用英文提问。然而,我们发现Lion在一定程度上也能理解其他语言的指令。请看下面的案例:

Lion:闭源大语言模型的对抗性蒸馏_第3张图片

恢复Lion权重

我们将 Lion 权重发布为增量权重,以符合 LLaMA 模型许可证。

  • Lion-7B(增量配重)

您可以将我们的增量添加到原始 LLaMA 权重中以获得 Lion 权重。指示:

  1. 按照此处的说明获取 Huggingface 格式的原始 LLaMA 权重
  2. 请从Hugging Face下载我们的 Delta 模型
  3. 使用以下脚本通过应用我们的增量来获取 Lion 权重:
python src/weight_diff.py recover --path_raw huggyllama/llama-7b --path_diff YuxinJiang/Lion --path_tuned 

推理

对于Lion的推理和训练,请首先安装要求:

pip install -r requirements.txt

我们为Lion提供了解码脚本,它读取输入文件并为每个样本生成相应的响应,最后将它们合并到输出文件中。它可以在具有 16GB GPU 的单台机器上运行。

python src/lion_inference.py \
    --model_dir  \
    --data_dir  \
    --output_dir  \
    --num_gpus 1

培训流程

下面显示了我们的对抗性蒸馏框架的一种迭代。

Lion:闭源大语言模型的对抗性蒸馏_第4张图片

1、模仿阶段

1.1 获取老师对Train Pool的回复

python src/chatgpt_inference.py \
    -q  \
    -o  \
    --api_key 

1.2 根据教师对训练池的反应对学生进行指令调整

微调是在具有 8 个 A100 80G GPU 的机器上进行的。

torchrun --nproc_per_node=8 --master_port= src/train.py \
    --model_name_or_path  \
    --data_path  \
    --bf16 True \
    --output_dir result \
    --num_train_epochs 3 \
    --model_max_length 1024 \
    --per_device_train_batch_size 2 \
    --per_device_eval_batch_size 2 \
    --gradient_accumulation_steps 8 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 500 \
    --save_total_limit 1 \
    --learning_rate 2e-5 \
    --weight_decay 0. \
    --warmup_ratio 0.03 \
    --lr_scheduler_type "cosine" \
    --logging_steps 1 \
    --fsdp "full_shard auto_wrap" \
    --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
    --tf32 True

解决 OOM

简单来说,微调 7B 模型需要大约 7 x 8 x 2 = 112 GB 的 VRAM。上面给出的命令启用参数分片,因此任何 GPU 上都不会存储冗余模型副本。如果您想进一步减少内存占用,可以选择以下一些选项:

  • 打开 FSDP 的 CPU 卸载--fsdp "full_shard auto_wrap offload"。这可以节省 VRAM,但代价是运行时间更长。

  • 根据我们的经验,DeepSpeed stage-3(带卸载)有时比带卸载的 FSDP 具有更高的内存效率。以下是使用具有 8 个 GPU 的 DeepSpeed stage-3 以及参数和优化器卸载的示例:

    deepspeed src/train_deepspeed.py \
        --model_name_or_path  \
        --data_path  \
        --output_dir result \
        --num_train_epochs 3 \
        --model_max_length 1024 \
        --per_device_train_batch_size 16 \
        --per_device_eval_batch_size 1 \
        --gradient_accumulation_steps 1 \
        --evaluation_strategy "no" \
        --save_strategy "steps" \
        --save_steps 600 \
        --save_total_limit 1 \
        --learning_rate 2e-5 \
        --warmup_ratio 0.03 \
        --logging_steps 1 \
        --lr_scheduler_type "cosine" \
        --report_to "tensorboard" \
        --gradient_checkpointing True \
        --deepspeed srcs/configs/deepspeed_config.json \
        --fp16 True
    
    • DeepSpeed 库还提供了一些有用的函数来估计内存使用情况。
  • LoRA微调查询、键和值嵌入头的低秩切片。这可以将总内存占用量从 112GB 减少到大约 7x4=28GB。我们将来可能会发布对此的重新实现,但目前peft代码库可能是一个有用的资源。

2. 歧视阶段

2.1 获取老师对Cache Pool的响应

python src/chatgpt_inference.py \
    -q  \
    -o  \
    --api_key 

2.2 获取学生对缓存池的回答

python src/lion_inference.py \
    --model_dir  \
    --data_dir  \
    --output_dir  \
    --num_gpus 8

2.3 要求裁判根据老师和学生的回答质量输出两个分数

python src/chatgpt_referee.py \
    -a   \
    -o  \
    --api_key 

2.4 区分硬指令和简单指令

python src/discrimination.py \
    --review_path  \
    --chatgpt_inference_path  \
    --lion_inference_path  \
    --hard_save_path  \
    --easy_save_path 

3. 生成阶段

3.1 生成新的硬指令

python -m src/generate_hard_instruction generate_instruction_following_data \
    --seed_tasks_path  \
    --output_dir  \
    --num_instructions_to_generate 3000 \
    --api_key 

3.2 生成新的简单指令

python -m src/generate_easy_instruction generate_instruction_following_data \
    --seed_tasks_path  \
    --output_dir  \
    --num_instructions_to_generate 3000 \
    --api_key 

评估

使用 GPT-4 自动评估

我们利用 GPT-4 自动评估两个模型在 80 个未见过的Vicuna 指令上的响应质量(分数从 1 到 10)。ChatGPT 已被选为参考模型来评估不同法学硕士的相对能力。相对分数以百分比形式报告,计算为分数总和的比率。

相对整体响应质量

Lion:闭源大语言模型的对抗性蒸馏_第5张图片

不同任务类别的相对响应质量

Lion:闭源大语言模型的对抗性蒸馏_第6张图片

具有对齐标准的人类评估

我们采用 Askel 等人提出的对齐标准。(2021),其中定义如果助理具有乐于助人、诚实和无害(HHH)的特点,则被认为是一致的。我们对 252 个UserOriented-Instructions进行了人工评估。为了估计获胜率,我们比较了下面每对模型之间获胜、平局和失败的频率。

Lion:闭源大语言模型的对抗性蒸馏_第7张图片

引文

如果您使用此存储库中的代码,请引用我们的论文。

@article{DBLP:journals/corr/abs-2305-12870,
  author       = {Yuxin Jiang and
                  Chunkit Chan and
                  Mingyang Chen and
                  Wei Wang},
  title        = {Lion: Adversarial Distillation of Closed-Source Large Language Model},
  journal      = {CoRR},
  volume       = {abs/2305.12870},
  year         = {2023},
  url          = {https://doi.org/10.48550/arXiv.2305.12870},
  doi          = {10.48550/arXiv.2305.12870},
  eprinttype    = {arXiv},
  eprint       = {2305.12870},
  timestamp    = {Fri, 26 May 2023 11:29:33 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2305-12870.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

免责声明

Xiv},
eprint = {2305.12870},
timestamp = {Fri, 26 May 2023 11:29:33 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2305-12870.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}


## 免责声明

⚠️Lion**仅供研究使用**并获得许可。**严禁**商业用途。任何版本的Lion生成的内容都会受到随机性等不可控变量的影响,因此本项目无法保证输出的准确性。本项目对模型输出的内容不承担任何法律责任,也不承担因使用相关资源和输出结果而产生的任何损失。

你可能感兴趣的:(大语言模型,GPT,AI,语言模型,人工智能,自然语言处理)