- 现代数据湖架构全景解析:存储、表格式、计算引擎与元数据服务的协同生态
讲文明的喜羊羊拒绝pua
大数据架构数据湖SparkIcebergAmoro对象存储
本文全面剖析现代数据湖架构的核心组件,深入探讨对象存储(OSS/S3)、表格式(Iceberg/Hudi/DeltaLake)、计算引擎(Spark/Flink/Presto)及元数据服务(HMS/Amoro)的协作关系,并提供企业级选型指南。一、数据湖架构演进与核心价值数据湖架构演进历程现代数据湖核心价值矩阵维度传统数仓现代数据湖存储成本高(专有硬件)低(对象存储)数据时效性小时/天级分钟/秒级
- 大数据、数据挖掘技术收集(Vivo互联网技术)
XiaoQiong.Zhang
数据挖掘大数据
Hudi在vivo湖仓一体的落地实践用户行为分析模型实践(四)——留存分析模型用户行为分析模型实践(三)——H5通用分析模型用户行为分析模型实践(二)——漏斗分析模型用户行为分析模型实践(一)——路径分析模型AB实验遇到用户不均匀怎么办?——vivo游戏中心业务实践经验分享HBaseCompaction原理与线上调优实践vivo游戏黑产反作弊实践Kafka实时数据即席查询应用与实践Hive和Spa
- Hudi、Iceberg 、 Paimon 数据湖选型对比
菜鸟冲锋号
数据仓库大数据
Hudi、Iceberg和Paimon是当前数据湖领域的三大主流开源框架,均致力于解决数据湖场景下的增量更新、事务支持、元数据管理、流批统一等核心问题,但设计理念和适用场景存在差异。以下从技术特性、适用场景和选型建议三方面对比分析:一、核心技术特性对比维度HudiIcebergPaimon(原FlinkPaimon)项目定位数据湖存储框架(支持流批写入、增量处理)数据湖表格式(聚焦表管理、元数据与
- hudi + flinksql 处理 金额汇总的实时场景
菜鸟冲锋号
湖仓一体flink大数据
Hudi与FlinkSQL结合处理实时金额汇总场景的核心优势在于:通过FlinkSQL的声明式流处理简化开发(无需编写复杂Java代码),结合Hudi的事务性存储管理明细与聚合数据的实时更新(如退单、金额修正)。以下是具体实现方案,包含架构设计、FlinkSQL语法示例及关键配置。一、场景需求与架构设计典型场景:实时统计电商GMV(全局/品类/地域)、用户实时累计消费金额(支持退单冲正)。核心需求
- Doris 数据集成 Apache Hudi
不二人生
Doris实战数据仓库doris湖仓一体
Doris数据集成ApacheHudi湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,已演进出一套成熟的湖仓一体解决方案。为便于用户快速入门,我们将通过系列文章介绍ApacheDoris与各类主流数据湖格式及存储系统的湖仓一体架构搭建指
- 基于Delta lake、Hudi格式的湖仓一体方案
呆呆咸猪手
数据仓库bigdatahadoop
简介:DeltaLake和Hudi是流行的开放格式的存储层,为数据湖同时提供流式和批处理的操作,这允许我们在数据湖上直接运行BI等应用,让数据分析师可以即时查询新的实时数据,从而对您的业务产生即时的洞察。MaxCompute在湖仓一体架构中,通过支持DeltaLake和Hudi在数据湖中提供数据仓库性能。本文作者孟硕阿里云智能产品专家一、最佳实践背景整个最佳实践是基于MaxCompute的湖仓一体
- 数据湖架构:从Delta Lake到Hudi实战对比
喜欢编程就关注我
架构数据湖架构从DeltaLake到Hudi实战对比代码
数据湖架构:从DeltaLake到Hudi实战对比随着大数据技术的飞速发展,数据湖架构逐渐成为企业处理大规模、多样化数据的首选方案。在数据湖领域,DeltaLake和Hudi作为两款流行的开源存储层技术,各自拥有独特的特点和优势。本文将通过实战对比,深入探讨DeltaLake和Hudi在数据湖架构中的应用,并通过代码和表格示例进行详细分析。一、DeltaLake与Hudi简介1.1DeltaLak
- 数据湖和Apache Iceberg,Apache Hudi,Delta Lake
西土城计划
apachebigdata大数据
1什么是数据湖?数据湖这个词目前已经流行开来,逐步被数据相关的从业者接受,可能还有很多人不太清楚它和Hadoop,Hive,Spark这些大数据系统的区别,简单说数据湖是个业务概念,主要是为了区别传统数仓这个概念的(传统数仓的定义:datawarehouse,是用于报告和数据分析的系统,被认为是商业智能的核心组件)。为什么说是“传统数仓”,因为Hadoop于2006年诞生至今已有10多年了,在这期
- Flink+Paimon/Hudi+Doris湖仓架构在各大公司落地的一些总结
王知无(import_bigdata)
flink架构大数据
记录一下各大公司落地湖仓项目的主要解决的问题和收益,从这些已经有的实践中吸收一些经验。参考的分享文档在文章末尾。一些背景阿里妈妈:实时广告决策驱动淘天集团商业数智营销中台,阿里妈妈日均处理千亿级广告请求,传统Lambda架构导致实时与离线数据割裂,无法满足分钟级预算调控需求。广告归因分析需跨时段行为关联,要求数据更新延迟低于50ms,同时需支持700GB/h的高并发写入。腾讯视频:指标治理与时效压
- 第三十五 篇缓慢变化维(SCD)全类型解析与应用实战指南
随缘而动,随遇而安
数据库数据仓库大数据数据库架构数据分析
目录一、SCD基础概念SCD三大核心特征二、6种标准SCD类型详解1.Type0(保留原始值)2.Type1(覆盖旧值)3.Type2(新增记录)4.Type3(新增字段)5.Type4(历史表分离)6.Type5(微型维度)7.Type6(混合型)三、扩展实现模式1.全量快照2.渐变快照四、选型决策矩阵五、现代数据栈实现方案1.基于Hudi的Type2实现2.dbt声明式配置六、性能优化策略七、
- 数据湖Iceberg、Hudi和Paimon比较_数据湖框架对比(1)
2301_79098963
程序员知识图谱人工智能
4.Schema变更支持对比项ApacheIcebergApacheHudiApachePaimonSchemaEvolutionALLback-compatibleback-compatibleSelf-definedschemaobjectYESNO(spark-schema)NO(我理解,不准确)SchemaEvolution:指schema变更的支持情况,我的理解是hudi仅支持添加可选列
- 第三十篇 维度建模:从理论到落地的企业级实践
随缘而动,随遇而安
数据库sql数据仓库大数据数据库架构
目录一、维度建模核心理论体系1.1Kimball方法论四大支柱1.2关键概念对比矩阵二、四步建模法全流程解析2.1选择业务过程(以电商为例)2.2声明原子粒度(订单案例)2.3维度设计规范时间维度(含财年逻辑)SCDType2完整实现(Hudi)2.4事实表类型与设计三、企业级建模实战:电商用户分析3.1业务矩阵分析3.2模型实现代码四、高级建模技巧4.1多星型模式关联4.2大数据场景优化五、性能
- 老板既要又要还要......我用Doris+Hudi把不可能变成了日常
一臻数据
大数据Doris大数据数据分析数据库
老板既要又要还要......我用Doris+Hudi把不可能变成了日常探索Doris与Hudi的完美融合智能查询优化华丽转身-不止于快的进化Doris+Hudi湖仓一体的"艺术之美"大数据江湖中流传着这样一个传说:有一位数据科学家,整日为查询性能发愁,夜夜加班优化SQL。直到有一天,他发现了Doris与Hudi的"天作之合",顿时开启了"飞毛腿"模式——查询速度快得连老板都不敢相信!如今,这个传说
- 六月份阶段性大总结之Doris/Clickhouse/Hudi一网打尽
王知无(import_bigdata)
大数据编程语言人工智能java数据分析
点击上方蓝色字体,选择“设为星标”回复"面试"获取更多惊喜全网最全大数据面试提升手册!这是个阶段性小总结,后面会持续更新。ClickHouse「Clickhouse系列」分布式表&本地表详解「ClickHouse系列」ClickHouse之MergeTree原理「ClickHouse系列」Replication机制详解「ClickHouse系列」ClickHouseSQL基本语法和导入导出实战「C
- doris:Hudi Catalog
向阳1218
大数据doris
使用限制Hudi表支持的查询类型如下:表类型支持的查询类型CopyOnWriteSnapshotQuery,TimeTravel,IcrementalReadMergeOnReadSnapshotQueries,ReadOptimizedQueries,TimeTravel,IcrementalRead目前支持HiveMetastore和兼容HiveMetastore类型(例如AWSGlue/Al
- 如何设计高效的数据湖架构?
晴天彩虹雨
架构大数据数据仓库
1.引言在大数据时代,数据湖(DataLake)逐渐成为企业存储和处理海量数据的重要基础设施。相比于传统数据仓库,数据湖能够支持结构化、半结构化和非结构化数据,同时提供更灵活的存储与计算能力。然而,如何合理设计数据湖架构,优化存储策略、Schema演进以及数据生命周期管理,是数据架构师必须深入思考的问题。本篇文章将深入探讨数据湖架构的设计方法,结合Hudi、Iceberg、DeltaLake等技术
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- 最新Apache Hudi 1.0.1源码编译详细教程以及常见问题处理
Toroidals
大数据组件安装部署教程hudi1.0.1源码编译教程最新
1.最新ApacheHudi1.0.1源码编译2.Flink、Spark、Hive集成Hudi1.0.13.flinkstreaming写入hudi目录1.版本介绍2.安装maven2.1.下载maven2.2.设置环境变量2.3.添加Maven镜像3.编译hudi3.1.下载hudi源码3.2.修改hudi源码3.3.修改hudi-1.0.1/pom.xml,注释或去掉410行内容3.4.安装c
- Apache Iceberg 与 Apache Hudi:数据湖领域的双雄对决
夜里慢慢行456
大数据大数据
在数据存储和处理不断发展的领域中,数据湖仓的概念已经崭露头角,成为了一种变革性的力量。数据湖仓结合了数据仓库和数据湖的最佳元素,提供了一个统一的平台,支持数据科学、商业智能、人工智能/机器学习以及临时报告等多种关键功能。这种创新的方法不仅促进了实时分析,还显著降低了平台成本,增强了数据治理,并加速了用例的实现。数据存储和处理的演变催生了被称为数据湖仓的现代分析平台。这些平台旨在解决传统架构的局限性
- 【hudi】基于hive2.1.1的编译hudi-1.0.0源码
lisacumt
大数据
hudi版本1.0.0需要使用较低版本的hive,编译hudi只需要修改下类即可:org.apache.hudi.hadoop.hive.HoodieCombineHiveInputFormat一、复制org.apache.hadoop.hive.common.StringInternUtils找个hive2.3.9的源码包,创建包路径,并将此类复制到hudi的hudi-common到下。当然其他
- 【Apache Paimon】-- 2 -- 核心特性 (0.9.0)
oo寻梦in记
ApachePaimon大数据Apachepaimon数据湖
目录1、实时更新1.1、实时大批量更新1.2、支持定义合并引擎1.3、支持定义更新日志生成器2、海量数据追加处理2.1、appendtable2.2、快速查询3、数据湖功能(类比:hudi、iceberg、delta)3.1、支持ACID事务3.2、支持Timetravel(时间旅行)3.3、支持SchemaEvolution(元数据变更)3.4、可扩展元数据:存储PB级大规模数据集和存储大量分区
- Hudi VS Doris 使用分析
sunxunyong
数据库
数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析对数据进行加工。Hudi(HadoopUpsertsDeletesandIncrementals)定位-面向数据湖的增量写入、更新与删除技术。Hudi通过表格式管理的能力,为数据湖提供ACID事务、时间旅行查询等特性。场景-近实时抽数(大规模数据更
- Flink整合Hudi及使用
我的K8409
Flinkflink服务器linux
1、jar包上传上传jar包即可完成整合#1、将hudi-flink1.15-bundle-0.15.0.jar包上传到flink的lib目录下/usr/local/soft/flink-1.15.3/lib--如果没有启动集群,直接忽略#2、重启flink的集群yarnapplication-listyarnapplication-killapplication_1706339492248_00
- 【Flink 实战系列】Flink CDC 实时同步 Mysql 全量加增量数据到 Hudi
JasonLee实时计算
Flink实战系列hbasespark大数据
【Flink实战系列】FlinkCDC实时同步Mysql全量加增量数据到Hudi前言FlinkCDC是基于Flink开发的变化数据获取组件(Changedatacapture),简单的说就是来捕获变更的数据,ApacheHudi是一个数据湖平台,又支持对数据做增删改查操作,所以FlinkCDC可以很好的和Hudi结合起来,打造实时数仓,实时湖仓一体的架构,下面就来演示一下同步的过程。环境组件版本F
- 基于MRS-Hudi构建数据湖的典型应用场景介绍
华为云技术精粹
云计算华为云
一、传统数据湖存在的问题与挑战传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化。虽然能够在海量批处理场景中取得不错的效果,但依然存在如下现状问题:问题一:不支持事务由于传统大数据方案不支持事务,有可能会读到未写完成的数据,造成数据统计错误。为了规避该问题,通常控制读写任务顺序调用,在保证写
- HUDI-0.11.0 BUCKET index on Flink 特性试用
_Magic
BigDataflinkhudi
1.背景在0.10.1版本下,使用默认的index(FLINK_STATE),在upsert模式下,几十亿级别的数据更新会消耗大量内存,并且检查点(checkpoint)时间过长。因此,切换到0.11.0的BUCKET索引。当前环境:Flink1.13.2+Hudi0.11.0(master2022.04.11)+COW+HDFS。关键配置项:index.type=BUCKEThoodie.buc
- 大数据新视界 --大数据大厂之 Hudi 数据湖框架性能提升:高效处理大数据变更
青云交
Hudi之道大数据新视界大数据Hudi数据湖框架大数据变更数据版本控制性能提升数据存储优化
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 兼容 Trino Connector,扩展 Apache Doris 数据源接入能力|Lakehouse 使用手册
vvvae1234
apache
ApacheDoris内置支持包括Hive、Iceberg、Hudi、Paimon、LakeSoul、JDBC在内的多种Catalog,并为其提供原生高性能且稳定的访问能力,以满足与数据湖的集成需求。而随着ApacheDoris用户的增加,新的数据源连接需求也随之增加。因此,从3.0版本开始,ApacheDoris引入了TrinoConnector兼容框架。Trino/Presto作为业界较早应用
- 实时数仓之实时数仓架构(Hudi)(1)
2401_84164527
程序员架构
目前比较流行的实时数仓架构有两类,其中一类是以Flink+Doris为核心的实时数仓架构方案;另一类是以湖仓一体架构为核心的实时数仓架构方案。本文针对Flink+Hudi湖仓一体架构进行介绍,这套架构的特点是可以基于一套数据完全实现Lambda架构。实时数仓架构图如下:技术框架Kafka:用于接入数据源;FlinkCDC:如果直接接入业务数据源可以考虑CDC方式,如果通过Kafka缓冲接入业务数据
- 2024年大数据最新实时数仓之实时数仓架构(Hudi)
2401_84185556
程序员大数据架构
技术框架Kafka:用于接入数据源;FlinkCDC:如果直接接入业务数据源可以考虑CDC方式,如果通过Kafka缓冲接入业务数据可以忽略;Flink:用于数据ETL,包括接入数据、处理数据及输出数据全链路数据计算任务;Spark:用于数据ETL,包括处理数据及输出数据全链路数据计算任务;Hudi:湖仓一体数据管理框架,用来管理模型数据,包括ODS/DWD/DWS/DIM/ADS等;Doris:O
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本