DataX优化

1、速度控制

​ DataX3.0提供了包括通道(并发)、记录流、字节流三种流控模式,可以随意控制你的作业速度,让你的作业在数据库可以承受的范围内达到最佳的同步速度。

关键优化参数如下:

参数 说明
job.setting.speed.channel 总并发数
job.setting.speed.record 总record限速
job.setting.speed.byte 总byte限速
core.transport.channel.speed.record 单个channel的record限速,默认值为10000(10000条/s)
core.transport.channel.speed.byte 单个channel的byte限速,默认值1024*1024(1M/s)

注意事项:

  1. 若配置了总record限速,则必须配置单个channel的record限速
  2. 若配置了总byte限速,则必须配置单个channe的byte限速
  3. 若配置了总record限速和总byte限速,channel并发数参数就会失效。因为配置了总record限速和总byte限速之后,实际channel并发数是通过计算得到的:

计算公式为:

min(总byte限速/单个channle的byte限速,总record限速/单个channel的record限速)

配置示例:

{
    "core": {
        "transport": {
            "channel": {
                "speed": {
                    "byte": 1048576 //单个channel byte限速1M/s
                }
            }
        }
    },
    "job": {
        "setting": {
            "speed": {
                "byte" : 5242880 //总byte限速5M/s
            }
        },
        ...
    }
}

2、内存调整

​ 当提升DataX Job内Channel并发数时,内存的占用会显著增加,因为DataX作为数据交换通道,在内存中会缓存较多的数据。例如Channel中会有一个Buffer,作为临时的数据交换的缓冲区,而在部分Reader和Writer的中,也会存在一些Buffer,为了防止OOM等错误,需调大JVM的堆内存。

​ 调整JVM xms xmx参数的两种方式:一种是直接更改datax.py脚本;另一种是在启动的时候,加上对应的参数,如下:

python datax/bin/datax.py --jvm="-Xms8G -Xmx8G" /path/to/your/job.json
  • -Xms8G:运行的最小分配内存,如果可用内存不足8G,这个命令将不能被执行。
  • -Xmx8G:运行时最大占用内存大小。

你可能感兴趣的:(DataX,DataX,异构数据源)