- Kafka SASL/SCRAM介绍
王多鱼的梦想~
Kafka修炼手册kafka分布式apache安全
文章目录KafkaSASL/SCRAM介绍1.SASL/SCRAM认证机制2.SASL/SCRAM认证工作原理2.1SCRAM认证原理2.1.1密码存储和加盐2.1.2SCRAM认证流程2.2SCRAM认证的关键算法2.3SCRAM密码存储2.4SCRAM密码管理3.配置和使用KafkaSASL/SCRAM3.1Kafka服务器端配置3.2创建SCRAM用户并设置密码3.3Kafka客户端配置3.
- 基于云计算的自然资源视频监控系统设计与研究
罗伯特之技术屋
大数据与数字化的设计应用专栏云计算音视频
摘要为了解决当前自然资源执法监管信息化系统存在的问题,满足对违法行为进行实时发现的需求,构建一个覆盖全省的实时监控视频系统。该系统基于云计算和视频中台等技术构建了两级云架构的视频处理与存储系统,通过AI等大数据算法对数据进行整合、分析,进而构建了具有执法线索、监督问效、行动处置和综合指挥等功能的自然资源管理系统。同时,该系统遵循安全等级保护三级要求,确保网络与信息安全,助力自然资源监管数字化。引言
- 数模测评:doubao1.5>deepseek-v3>gpt-o1
您好啊数模君
gpt数学建模deepseekdoubao
本次测试了当前评价最高的三款大模型doubao1.5、gpt-o1、deepseek-v3(r1崩溃),都是采用无提示词的硬核提问方式,测试视频如下。gpto1、doubao1.5、deepseek测评测试方式:上传美赛六道题目文件直接提问以下5句话:这是一道数学建模题目,请做下问题重述请给出每一个问题的思路针对每个问题推荐前沿算法建立第一问数学模型编写第一问数学模型的程序
- 向上调整算法(详解)c++
h^hh
数据结构算法c++开发语言
算法流程:与⽗结点的权值作⽐较,如果⽐它⼤,就与⽗亲交换;交换完之后,重复1操作,直到⽐⽗亲⼩,或者换到根节点的位置这里为什么插入85完后合法?我们插入一个85,当85还没来的时候,此时的堆是一个合法的大堆,所有的节点都大于等于子树中所有节点,85到来的时候,我会拿它和它的父节点作比较,如果它小于父结点,比如3,那就不用调整,因为当前节点小于父节点,也肯定小于父节点的父结点,因为这是一个堆结构,只
- Python从0到100(八十一):神经网络-Fashion MNIST数据集取得最高的识别准确率
是Dream呀
python神经网络开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 【解决报错】安装pycrypto遇到报错“error: subprocess-exited-with-error × python setup.py egg_info did not run ”
LotsoD
爬虫
“PyCrypto”是一个用于加密目的的Python库,提供一系列加密算法和工具。它允许开发者在应用中实现各种加密和解密功能。安装pycrypto库时遇到如下报错:尝试安装setuptools库发现已安装,也解决不了该报错。解决方法:可以安装pycryptodome库,这个库是pycrypto库的延伸,两者作用一样。pipinstallpycryptodome
- C语言程序执行全流程
柠檬鲨_
c语言开发语言
其实下面的步骤知道大概就行了~不用每个都详细了解(OS:你就算只知道编辑编译链接执行这四个阶段都不影响学习的)C语言程序的执行过程涉及多个步骤,在编译前主要有编辑阶段。以下是C语言程序从编写到执行的完整顺序及各阶段的详细介绍:编辑阶段文本编写:程序员使用文本编辑器(如VisualStudioCode、SublimeText、Vim等)编写C语言代码,将算法和逻辑以文本形式输入到源文件中,源文件通常
- 强化学习中的关键模型与算法:从Actor-Critic到GRPO
人工智能
强化学习中的关键模型与算法:从Actor-Critic到GRPO强化学习中的Actor-Critic模型是什么?这与生成对抗网络(GANs)十分相似。在生成对抗网络中,生成器和判别器模型在整个训练过程中相互对抗。在强化学习的Actor-Critic模型中,也存在类似的概念:Actor-Critic(A2C、A3C)是一种流行的强化学习架构,它结合了两个组件:Actor(行动者)——学习策略($\p
- 多模态大模型:技术原理与实战 工具和算法框架介绍
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1从单模态到多模态的必然趋势传统的深度学习模型大多是单模态的,例如只处理图像数据的卷积神经网络(CNN)或只处理文本数据的循环神经网络(RNN)。然而,现实世界的信息往往是多模态的,例如一张图片可以包含物体、场景、文字等多种信息,一段视频则包含图像、声音、字幕等多种模态的数据。为了更好地理解和处理现实世界的信息,多模态学习应运而生。近年来,随着深度学习技术的快速发展,多模态学习取得
- 【数据结构】_链表经典算法OJ:相交链表
_周游
OJC语言数据结构(C&C++)算法数据结构leetcode
目录1.题目链接及描述2.解题思路2.1思路1:一个链表把另外一个链表的结点逐个轮一遍2.2思路2:截断长链表,从距离交点结点前等距处开始同时遍历(本题解法)3.程序关于解题程序的细节:3.1假设法的应用:3.2关于链表长度的计算1.题目链接及描述题目链接:160.相交链表-力扣(LeetCode)题目描述:给你两个单链表的头节点headA和headB,请你找出并返回两个单链表相交的起始节点。如果
- 深度学习专业毕业设计选题清单:算法与应用
HaiLang_IT
毕业设计选题毕业设计人工智能深度学习
目录前言毕设选题开题指导建议更多精选选题选题帮助最后前言大家好,这里是海浪学长毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了计算机专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!对毕设有任何疑问都可以问学长哦!更多选题指导:最新最全计算机专业毕设选题精选推荐汇总
- C++面经(简洁版)
旧链爱学习
面经c++开发语言
1.谈谈C和C++的认识C++在C的基础上添加类,C是一种结构化语言,它的重点在于数据结构和算法。C语言的设计首要考虑的是如何通过一个过程,对输入进行运算处理得到输出,而对C++,首先要考虑的是如何构造一个对象,通过封装一下行为和属性,通过一些操作将对象的状态信息输出2.对象2.1什么是面向对象就是一种对现实世界的理解和抽象,将问题转换成对象进行解决需求处理的思想。2.2如何限制一个类对象只能在堆
- python算法和数据结构刷题[5]:动态规划
励志成为美貌才华为一体的女子
数据结构与算法算法数据结构动态规划
动态规划(DynamicProgramming,DP)是一种算法思想,用于解决具有最优子结构的问题。它通过将大问题分解为小问题,并找到这些小问题的最优解,从而得到整个问题的最优解。动态规划与分治法相似,但区别在于动态规划的子问题通常不是相互独立的。动态规划的核心是解决重复子问题。例如,斐波那契数列问题,可以通过递归实现,但效率低下,因为会有重复计算。动态规划通过存储已解决的子问题的答案,避免重复计
- python 求差分_用python实现简单的有限元方法(一)
weixin_39622710
python求差分
华中师范大学hahakity有限元算法(FiniteElementMethod,简称FEM)是一种非常流行的求解偏微分方程的数值算法。有限元被广泛应用于结构受力分析、复杂边界的麦克斯韦方程求解以及热传导等问题。这一节介绍有限元方法的基本原理,以及如何用Python从头实现一个有限元算法,数值求解麦克斯韦方程。学习内容筑基:加权残差法(WeightedResidualMethod)心法:有限元与有限
- python cv2 matchtemplate_机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMa...
weixin_39621044
pythoncv2matchtemplate
1.cv2.matchTemplate(src,template,method)#用于进行模板匹配参数说明:src目标图像,template模板,method使用什么指标做模板的匹配度指标2.min_val,max_val,min_loc,max_loc=cv2.minMaxLoc(ret)#找出矩阵中最大值和最小值,即其对应的(x,y)的位置参数说明:min_val,max_val,min_lo
- 机器学习进阶-图像金字塔与轮廓检测-图像金字塔(拉普拉斯金字塔)
weixin_33908217
人工智能python
拉普拉斯金字塔:使用原始图片-pyrUp(pyrDown(Gi)),获得的结果有一点像边缘轮廓的提取上图的意思:1.进行低通滤波2.进行样本的下采样3.进行样本的上采样4.原始图片-经过上面三步后的图片代码:第一步:读入图片第二步:进行样本的下采样第三步:进行样本的上采样第四步:原始图片-变化后的图片importcv2importnumpyasnpimg=cv2.imread('AM.png')#
- 一百道编程题|09 前序遍历
今儿敲了吗
算法数据结构
目录一、明确题目要求二、核心思路-递归与序列划分三、代码实现要点四、知识点二叉树的遍历方式递归算法一、明确题目要求题目给出一棵二叉树的中序与后序排列,要求求出它的先序排列。树结点用不同的大写字母表示,长度≤8。二、核心思路-递归与序列划分确定根节点:后序序列的最后一个元素是根节点。划分左右子树:以根节点为界,将中序序列划分为左右子树的中序序列。再根据中序序列的划分,在后序序列中找到对应的左右子树的
- python算法和数据结构刷题[3]:哈希表、滑动窗口、双指针、回溯算法、贪心算法
励志成为美貌才华为一体的女子
数据结构与算法算法数据结构散列表
回溯算法「所有可能的结果」,而不是「结果的个数」,一般情况下,我们就知道需要暴力搜索所有的可行解了,可以用「回溯法」。回溯算法关键在于:不合适就退回上一步。在回溯算法中,递归用于深入到所有可能的分支,而迭代(通常在递归函数内部的循环中体现)用于探索当前层级的所有可能选项。组合问题39.组合总和-力扣(LeetCode)给你一个无重复元素的整数数组candidates和一个目标整数target,找出
- 决策树ID3算法
小波LFZZB
算法决策树机器学习数据挖掘sklearn
决策树决策树概念决策树,一种基于规则的机器学习方法,主要用于分类和回归,常用作机器学习中的预测模型。树形结构图,树中每个节点表示某个对象,每个分叉路径代表的某个可能的属性值,每个叶结点对应从根节点到该叶节点所经历的路径所表示的对象的值。它通过递归地划分数据空间并在每个分区内拟合一个简单的预测模型来工作。选择分区是为了在每个细分中最大化目标变量的同质性。决策树特点1.树形结构决策树由根节点、内部节点
- 波士顿房价预测
苏轼喜欢玩电脑
浙师大506实验室
波士顿房价预测任务波士顿地区的房价是由诸多因素影响的。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型,因为房价是一个连续值,所以房价预测显然是一个回归任务。用最简单的线性回归模型解决这个问题,并用神经网络来实现这个模型。线性回归模型假设房价和各影响因素之间能够用线性关系来描述:y=∑j=1Mxjwj+by={\sum_{j=1}^Mx_jw_
- 华为OD2024机试最新E卷题库-(A+B+C+D+E)
蜗牛快快快快跑
华为od算法数据结构贪心算法排序算法动态规划
在这个精心策划的专栏中,我们聚焦于华为OD2024机试的最新E卷题库,涵盖JS、C、C++、Java与Python五大编程语言,旨在为挑战者提供全面而深入的备战资源。这里不仅有精选的实战题目,还有详尽的解题思路与代码实现,帮助你掌握核心算法,理解数据结构,提升编程技巧。以下是每个卷宗的详细,可以通过直接点击试卷链接查看练习试卷编号备注OD-E卷原题+个人代码+思路解析,95%以上的通过率,方便大家
- 【pytorch(cuda)】基于DQN算法的无人机三维城市空间航线规划(Python代码实现)
科研_G.E.M.
pythonpytorch算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、DQN算法概述三、基于DQN的无人机三维航线规划方法1.环境建模2.状态与动作定义3.奖励函数设计4.深度神经网络训练5.航线规划四、研究挑战与展望2运行结果3参考文献4Python代码实现⛳️赠与读者做科研,涉及到一个深在的
- 【导航业务框架】autoware manager
盒子君~
#自动驾驶Autoware#架构自动驾驶人工智能
文章目录(1)从Autoware的系统层进行剖析(2)从系统组件框图进行剖析(3)从算法的基本控制和数据流进行剖析(4)从Autoware的节点图进行剖析【较有用】总结部署经验总结参考资料无人驾驶Autoware相关教程及博客请关注专栏:https://blog.csdn.net/qq_35635374/article/details/138165657无人车&无人机导航合集https://blo
- 监督学习、无监督学习和强化学习的特点和应用场景
BugNest
AI学习ai机器学习人工智能
在机器学习中,监督学习、无监督学习和强化学习是三种核心的学习范式,它们各自具有独特的特点和应用场景。以下是对这三种学习方法的详细对比和总结:监督学习(SupervisedLearning)特点:数据标注:训练数据包含明确的输入特征和对应的标签(目标输出)。学习方式:模型通过学习输入特征和标签之间的关系来进行训练,这种关系通常表现为一个映射函数。预测能力:一旦训练完成,模型能够对新的、未见过的输入数
- DiffuEraser: 一种基于扩散模型的视频修复技术
扫地僧985
音视频
视频修复算法结合了基于流的像素传播与基于Transformer的生成方法,利用光流信息和相邻帧的信息来恢复纹理和对象,同时通过视觉Transformer完成被遮挡区域的修复。然而,这些方法在处理大范围遮挡时常常会遇到模糊和时序不一致的问题,这凸显了增强生成能力模型的重要性。近期,由于扩散模型在图像和视频生成方面展现出了卓越的性能,已成为一种重要的技术。在本文中,我们介绍了DiffuEraser,这
- python(scikit-learn)实现k均值聚类算法
嘿哈哈哈哈哈哈
机器学习聚类python算法机器学习人工智能
k均值聚类算法原理详解示例为链接中的例题直接调用python机器学习的库scikit-learn中k均值算法的相关方法fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotlib.pyplotaspltx=np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])#计算k均值聚类kmeans=KMeans(n_
- Scikit-learn_聚类算法_K均值聚类
飞Link
Water算法机器学习人工智能
一.描述首先从X数据集中选择k个样本作为质心,然后重复以下两个步骤来更新质心,直到质心不再显著移动为:第一步将每个样本分配到距离最近的质心第二步根据每二个质心所有样本的平均值来创建新的质心二.用法和参数KMeans类MiniBatchKMeans类:是KMeans类的变种,他是用小批量来减少计算时间,而多个批次仍然尝试优化相同的目标函数。小批量是输入数据的子集,是每次训练迭代中的随机抽样。小批量大
- 《C++ 赋能 K-Means 聚类算法:开启智能数据分类之旅》
c++c#
在当今数字化浪潮汹涌澎湃的时代,人工智能无疑是引领科技变革的核心驱动力之一。而在人工智能的广袤天地中,数据分类与聚类作为挖掘数据内在价值、揭示数据潜在规律的关键技术手段,正发挥着前所未有的重要作用。K-Means聚类算法,作为数据聚类领域的经典之作,以其简洁高效的特性而备受瞩目。当我们将目光聚焦于C++这一强大而高效的编程语言时,会发现它与K-Means聚类算法的结合犹如天作之合,能够为数据处理与
- 《数据可视化新高度:Graphy的AI协作变革》
程序猿阿伟
信息可视化人工智能数据分析
在数据洪流奔涌的时代,企业面临的挑战不再仅仅是数据的收集,更在于如何高效地将数据转化为洞察,助力决策。Graphy作为一款前沿的数据可视化工具,凭借AI赋能的团队协作功能,为企业打开了数据协作新局面,重新定义了团队在数据领域的协同方式。智能角色分配,适配专长促协作Graphy利用AI算法,根据团队成员过往在数据项目中的表现、技能标签以及参与任务的类型,分析出每个成员在数据可视化流程中的优势。比如,
- Scikit-Learn K均值聚类
对许
#Python#人工智能与机器学习scikit-learn聚类机器学习
Scikit-LearnK均值聚类1、K均值聚类1.1、K均值聚类及原理1.2、K均值聚类的优缺点1.3、聚类与分类的区别2、Scikit-LearnK均值聚类2.1、Scikit-LearnK均值聚类API2.2、K均值聚类初体验(寻找最佳K)2.3、K均值聚类案例1、K均值聚类K-均值(K-Means)是一种聚类算法,属于无监督学习。K-Means在机器学习知识结构中的位置如下:1.1、K均值
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默