TOPSIS优劣解距离法

来源:数学建模清风 学习内容所整理


文章目录

  • 评价类模型
  • 一、TOPSIS法(优劣解距离法)
    • 01 矩阵正向化
    • 02 正向化矩阵标准化
    • 03 计算得分归一化
    • matlab代码实现
  • 二、基于熵权法的TOPSIS算法
    • 01 引入
    • 02 熵权法计算步骤
      • ①标准化
      • ②计算所占概率
      • ③计算信息熵归一化得熵权
    • 03 熵权法原理
    • matlab代码


数据资料搜索网站 虫部落-快搜 https://www.chongbuluo.com/

搜索优先级:

1.谷歌搜索
2.微信搜索
3.知乎搜索


评价类模型


评价类问题中主要分为确定评价指标,形成评价体系,就是对目标打分排序选最优解。

(例如:选择哪种方案最好、哪位运 动员或者员工表现的更优秀)。

解决评价类问题先从三个问题入手:

①评价的目标是什么?

从题目要求中获取

②为了达到目标有哪些可选方案?

题目中所给可执行方案

③评价的指标是什么?

从背景材料、常识、及网上搜集的参考资料(文献)筛选合适指标


一、TOPSIS法(优劣解距离法)

TOPSIS法:(Technique for Order Preference by Similarity to an Ideal Solution),翻译为逼近理想解序法,也称优劣解距离法。TOPSIS法是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。

  • 基本过程为先将原始数据统一指标类型(一般正向化)处理得到正向化矩阵,再进行标准化处理消除各指标量纲的影响,并找到有限方案中的最优方案和最劣方案,然后分别计算各评价对象与最优方案和最劣方案间的距离,获得各评价对象与最优方案的相对接近程度,以此作为评价优劣的依据。该方法对数据分布及样本含量没有严格限制,数据计算简单易行。


01 矩阵正向化


  • 将所有指标类型转化为极大型指标 (就是越大越好,比如考试成绩)
    TOPSIS优劣解距离法_第1张图片
    TOPSIS优劣解距离法_第2张图片

TOPSIS优劣解距离法_第3张图片
TOPSIS优劣解距离法_第4张图片

正向化的公式不唯一,可以自行结合数据修改


02 正向化矩阵标准化


  • 标准化就是消除不同量纲的影响

TOPSIS优劣解距离法_第5张图片


03 计算得分归一化


  • 不考虑权重的归一化计算(默认各个指标的权重一致)

TOPSIS优劣解距离法_第6张图片

  • 带权重的归一化计算(各个指标所占权重不同)
    TOPSIS优劣解距离法_第7张图片
    TOPSIS优劣解距离法_第8张图片

matlab代码实现


  • 先导入自定义函数文件

matlab 中不支持自定义函数放主函数中,所以要单独放在一个.m文件中,然后把自定义函数文件和主函数文件放同一个文件夹之下

  • 自定义正向化函数
% function [输出变量] = 函数名称(输入变量)  
% 函数的中间部分都是函数体
% 函数的最后要用end结尾
% 输出变量和输入变量可以有多个,用逗号隔开
% function [a,b,c]=test(d,e,f)
%     a=d+e;
%     b=e+f;
%     c=f+d;
% end
% 自定义的函数要单独放在一个m文件中,不可以直接放在主函数里面(和其他大多数语言不同)

function [posit_x] = Positivization(x,type,i)
% 输入变量有三个:
% x:需要正向化处理的指标对应的原始列向量
% type: 指标的类型(1:极小型, 2:中间型, 3:区间型)
% i: 正在处理的是原始矩阵中的哪一列
% 输出变量posit_x表示:正向化后的列向量
    if type == 1  %极小型
        disp(['第' num2str(i) '列是极小型,正在正向化'] )
        posit_x = Min2Max(x);  %调用Min2Max函数来正向化
        disp(['第' num2str(i) '列极小型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    elseif type == 2  %中间型
        disp(['第' num2str(i) '列是中间型'] )
        best = input('请输入最佳的那一个值: ');
        posit_x = Mid2Max(x,best);
        disp(['第' num2str(i) '列中间型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    elseif type == 3  %区间型
        disp(['第' num2str(i) '列是区间型'] )
        a = input('请输入区间的下界: ');
        b = input('请输入区间的上界: '); 
        posit_x = Inter2Max(x,a,b);
        disp(['第' num2str(i) '列区间型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    else
        disp('没有这种类型的指标,请检查Type向量中是否有除了1、2、3之外的其他值')
    end
end
  • 自定义极小型指标正向化函数
function [posit_x] = Min2Max(x)
    posit_x = max(x) - x;
     %posit_x = 1 ./ x;    %如果x全部都大于0,也可以这样正向化
end
  • 自定义中间型指标正向化函数
function [posit_x] = Mid2Max(x,best)
    M = max(abs(x-best));
    posit_x = 1 - abs(x-best) / M;
end
  • 自定义区间型指标正向化函数
function [posit_x] = Inter2Max(x,a,b)
    r_x = size(x,1);  % row of x 
    M = max([a-min(x),max(x)-b]);
    posit_x = zeros(r_x,1);   %zeros函数用法: zeros(3)  zeros(3,1)  ones(3)
    % 初始化posit_x全为0  初始化的目的是节省处理时间
    for i = 1: r_x
        if x(i) < a
           posit_x(i) = 1-(a-x(i))/M;
        elseif x(i) > b
           posit_x(i) = 1-(x(i)-b)/M;
        else
           posit_x(i) = 1;
        end
    end
end

以上自定义函数都必须单独存放于 .m文件 和 主函数 在同一目录文件夹下,等待被主函数调用

  • topsis主函数
%%  第一步:把数据复制到工作区,并将这个矩阵命名为X  %导入数据
% (1)在工作区右键,点击新建(Ctrl+N),输入变量名称为X
% (2)在Excel中复制数据,再回到Excel中右键,点击粘贴Excel数据(Ctrl+Shift+V)
% (3)关掉这个窗口,点击X变量,右键另存为,保存为mat文件(下次就不用复制粘贴了,只需使用load命令即可加载数据)
% (4)注意,代码和数据要放在同一个目录下哦,且Matlab的当前文件夹也要是这个目录。
clear;clc
load data_xxx.mat
%% 注意:如果提示: 错误使用 load,无法读取文件 'data_xxx.mat'。没有此类文件或目录。
% 那么原因是因为你的Matlab的当前文件夹中不存在这个文件
% 可以使用cd函数修改Matlab的当前文件夹
% 比如说,我的代码和数据放在了: D:第2讲.TOPSIS法(优劣解距离法)\代码和例题数据
% 那么我就可以输入命令:
% cd 'D:第2讲.TOPSIS法(优劣解距离法)\代码和例题数据'

%%  第二步:判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标']) 
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0:  ']);

if Judge == 1
    Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
    disp('请输入需要处理的这些列的指标类型(1:极小型, 2:中间型, 3:区间型) ')
    Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]:  '); %[2,1,3]
    % 注意,Position和Type是两个同维度的行向量
    for i = 1 : size(Position,2)  %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
        X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
    % Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
    % 第一个参数是要正向化处理的那一列向量 X(:,Position(i))   回顾上一讲的知识,X(:,n)表示取第n列的全部元素
    % 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
    % 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
    % 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
    end
    disp('正向化后的矩阵 X =  ')
    disp(X)
end
%% 补充:在这里增加是否需要算加权
% 补充一个基础知识:m*n维的矩阵A 点乘 n维行向量B,等于这个A的每一行都点乘B
% (注意:2017以及之后版本的Matlab才支持,老版本Matlab会报错)
% % 假如原始数据为:
%   A=[1, 2, 3;
%        2, 4, 6] 
% % 权重矩阵为:
%   B=[ 0.2, 0.5 ,0.3 ] 
% % 加权后为:
%   C=A .* B
%     0.2000    1.0000    0.9000
%     0.4000    2.0000    1.8000
% 类似的,还有矩阵和向量的点除, 大家可以自己试试计算A ./ B
% 注意,矩阵和向量没有 .- 和 .+ 哦 ,大家可以试试,如果计算A.+B 和 A.-B会报什么错误。

%% 让用户判断是否需要增加权重
disp('请输入是否需要增加权重向量,需要输入1,不需要输入0')
Judge = input('请输入是否需要增加权重: ');
if Judge == 1
    disp(['如果你有3个指标,你就需要输入3个权重,例如它们分别为0.25,0.25,0.5, 则你需要输入[0.25,0.25,0.5]']);
    weigh = input(['你需要输入' num2str(m) '个权数。' '请以行向量的形式输入这' num2str(m) '个权重: ']);
    OK = 0;  % 用来判断用户的输入格式是否正确
    while OK == 0 
        if abs(sum(weigh) - 1)<0.000001 && size(weigh,1) == 1 && size(weigh,2) == m   % 这里要注意浮点数的运算是不精准的。
             OK =1;
        else
            weigh = input('你输入的有误,请重新输入权重行向量: ');
        end
    end
else
    weigh = ones(1,m) ./ m ; %如果不需要加权重就默认权重都相同,即都为1/m
end


%% 第三步:对正向化后的矩阵进行标准化
Z = X ./ repmat(sum(X.*X) .^ 0.5, n, 1);
disp('标准化矩阵 Z = ')
disp(Z)

%% 第四步:计算与最大值的距离和最小值的距离,并算出得分
D_P = sum([(Z - repmat(max(Z),n,1)) .^ 2 ] .* repmat(weigh,n,1) ,2) .^ 0.5;   % D+ 与最大值的距离向量
D_N = sum([(Z - repmat(min(Z),n,1)) .^ 2 ] .* repmat(weigh,n,1) ,2) .^ 0.5;   % D- 与最小值的距离向量
S = D_N ./ (D_P+D_N);    % 未归一化的得分
disp('最后的得分为:')
stand_S = S / sum(S)
[sorted_S,index] = sort(stand_S ,'descend')

% A = magic(5)  % 幻方矩阵
% M = magic(n)返回由1到n^2的整数构成并且总行数和总列数相等的n×n矩阵。阶次n必须为大于或等于3的标量。
% sort(A)若A是向量不管是列还是行向量,默认都是对A进行升序排列。sort(A)是默认的升序,而sort(A,'descend')是降序排序。
% sort(A)若A是矩阵,默认对A的各列进行升序排列
% sort(A,dim)
% dim=1时等效sort(A)
% dim=2时表示对A中的各行元素升序排列
% A = [2,1,3,8]
% Matlab中给一维向量排序是使用sort函数:sort(A),排序是按升序进行的,其中A为待排序的向量;
% 若欲保留排列前的索引,则可用 [sA,index] = sort(A,'descend') ,排序后,sA是排序好的向量,index是向量sA中对A的索引。
% sA  =  8     3     2     1
% index =  4     3     1     2



% % 注意:代码文件仅供参考,一定不要直接用于自己的数模论文中
% % 国赛对于论文的查重要求非常严格,代码雷同也算作抄袭

代码降重方法:

  1. 增加注释(甚至可以每一行都加注释)
  2. 替换变量名
  3. 增加恶心字符(emmmm…不作说明)
  4. 附录代码块变为图片

二、基于熵权法的TOPSIS算法


  • 是基于熵权法对Topsis模型的修正
  • 加权Topsis算法中用层次分析法确定权重的话过于主观性,可以用熵权法来确定权重

01 引入

TOPSIS优劣解距离法_第9张图片
TOPSIS优劣解距离法_第10张图片
TOPSIS优劣解距离法_第11张图片
TOPSIS优劣解距离法_第12张图片
TOPSIS优劣解距离法_第13张图片

熵越大,信息量越小,概率越大,信息效用值越小,熵权越小



02 熵权法计算步骤


①标准化

TOPSIS优劣解距离法_第14张图片


②计算所占概率

TOPSIS优劣解距离法_第15张图片


③计算信息熵归一化得熵权

TOPSIS优劣解距离法_第16张图片



03 熵权法原理

TOPSIS优劣解距离法_第17张图片

%  code_Monre_Carle.m
%% 蒙特卡洛模拟:指标的标准差和信息熵成反比
n = 30;  % 样本个数
N = 100; % 试验的次数
result = zeros(N,2);  % 初始化用来保存信息熵和标准差的矩阵,横坐标表示信息熵,纵坐标表示标准差
for i = 1:N
    x = rand(n,1);  % 随机生成n个位于区间[0,1]上面的样本 
    p = x / sum(x);
    e = -sum(p .* mylog(p)) / log(n); % 计算信息熵
    sd = std(x);  % 计算标准差
    result(i,1) = e;
    result(i,2) = sd;
end

plot(result(:,1),result(:,2),'o')   %画图
xlabel('信息熵')
ylabel('标准差')
[r,p] = corrcoef(result(:,1),result(:,2)) % 计算相关系数和对应的p值

TOPSIS优劣解距离法_第18张图片
:来自清风数学建模


matlab代码


  • 因为该模型为Topsis模型的优化,故调用的自定义函数代码未变可看上述Topsis模型中代码

  • 增加的熵权法代码
function [W] = Entropy_Method(Z)
% 计算有n个样本,m个指标的样本所对应的的熵权
% 输入
% Z : n*m的矩阵(要经过正向化和标准化处理,且元素中不存在负数)
% 输出
% W:熵权,m*1的行向量

%% 计算熵权
    [n,m] = size(Z);
    D = zeros(1,m);  % 初始化保存信息效用值的行向量
    for i = 1:m
        x = Z(:,i);  % 取出第i列的指标
        p = x / sum(x);
        % 注意,p有可能为0,此时计算ln(p)*p时,Matlab会返回NaN,所以这里我们自己定义一个函数
        e = -sum(p .* mylog(p)) / log(n); % 计算信息熵
        D(i) = 1- e; % 计算信息效用值
    end
    W = D ./ sum(D);  % 将信息效用值归一化,得到权重    
end

% % 注意:代码文件仅供参考,一定不要直接用于自己的数模论文中
% % 国赛对于论文的查重要求非常严格,代码雷同也算作抄袭
  • 被调用函数 mylog
% 重新定义一个mylog函数,当输入的p中元素为0时,返回0
function [lnp] =  mylog(p)
n = length(p);   % 向量的长度
lnp = zeros(n,1);   % 初始化最后的结果
    for i = 1:n   % 开始循环
        if p(i) == 0   % 如果第i个元素为0
            lnp(i) = 0;  % 那么返回的第i个结果也为0
        else
            lnp(i) = log(p(i));  
        end
    end
end
  • 基于熵权法topsis算法主函数
    (需要调用的自定义函数在第二部分Topsis算法代码中有)
%%  第一步:把数据复制到工作区,并将这个矩阵命名为X
% (1)在工作区右键,点击新建(Ctrl+N),输入变量名称为X
% (2)在Excel中复制数据,再回到Excel中右键,点击粘贴Excel数据(Ctrl+Shift+V)
% (3)关掉这个窗口,点击X变量,右键另存为,保存为mat文件(下次就不用复制粘贴了,只需使用load命令即可加载数据)
% (4)注意,代码和数据要放在同一个目录下哦。
clear;clc
load data_water_quality.mat

%%  第二步:判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标']) 
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0:  ']);

if Judge == 1
    Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
    disp('请输入需要处理的这些列的指标类型(1:极小型, 2:中间型, 3:区间型) ')
    Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]:  '); %[2,1,3]
    % 注意,Position和Type是两个同维度的行向量
    for i = 1 : size(Position,2)  %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
        X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
    % Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
    % 第一个参数是要正向化处理的那一列向量 X(:,Position(i))   回顾上一讲的知识,X(:,n)表示取第n列的全部元素
    % 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
    % 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
    % 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
    end
    disp('正向化后的矩阵 X =  ')
    disp(X)
end
%% 注意:在这里增加是否需要算加权
% 补充一个基础知识:m*n维的矩阵A 点乘 n维行向量B,等于这个A的每一行都点乘B
% (注意:2017以及之后版本的Matlab才支持,老版本Matlab会报错)
% % 假如原始数据为:
%   A=[1, 2, 3;
%        2, 4, 6] 
% % 权重矩阵为:
%   B=[ 0.2, 0.5 ,0.3 ] 
% % 加权后为:
%   C=A .* B
%     0.2000    1.0000    0.9000
%     0.4000    2.0000    1.8000
% 类似的,还有矩阵和向量的点除, 大家可以自己试试计算A ./ B
% 注意,矩阵和向量没有 .- 和 .+ 哦 ,大家可以试试,如果计算A.+B 和 A.-B会报什么错误。


%% 第三步:对正向化后的矩阵进行标准化
Z = X ./ repmat(sum(X.*X) .^ 0.5, n, 1);
disp('标准化矩阵 Z = ')
disp(Z)


%% 让用户判断是否需要增加权重
disp("请输入是否需要增加权重向量,需要输入1,不需要输入0")
Judge = input('请输入是否需要增加权重: ');
if Judge == 1
    Judge = input('使用熵权法确定权重请输入1,否则输入0: ');
    if Judge == 1
        if sum(sum(Z<0)) >0   % 如果之前标准化后的Z矩阵中存在负数,则重新对X进行标准化
            disp('原来标准化得到的Z矩阵中存在负数,所以需要对X重新标准化')
            for i = 1:n
                for j = 1:m
                    Z(i,j) = [X(i,j) - min(X(:,j))] / [max(X(:,j)) - min(X(:,j))];
                end
            end
            disp('X重新进行标准化得到的标准化矩阵Z为:  ')
            disp(Z)
        end
        weight = Entropy_Method(Z);
        disp('熵权法确定的权重为:')
        disp(weight)
    else
        disp(['如果你有3个指标,你就需要输入3个权重,例如它们分别为0.25,0.25,0.5, 则你需要输入[0.25,0.25,0.5]']);
        weight = input(['你需要输入' num2str(m) '个权数。' '请以行向量的形式输入这' num2str(m) '个权重: ']);
        OK = 0;  % 用来判断用户的输入格式是否正确
        while OK == 0 
            if abs(sum(weight) -1)<0.000001 && size(weight,1) == 1 && size(weight,2) == m  % 注意,Matlab中浮点数的比较要小心
                OK =1;
            else
                weight = input('你输入的有误,请重新输入权重行向量: ');
            end
        end
    end
else
    weight = ones(1,m) ./ m ; %如果不需要加权重就默认权重都相同,即都为1/m
end


%% 第四步:计算与最大值的距离和最小值的距离,并算出得分
D_P = sum([(Z - repmat(max(Z),n,1)) .^ 2 ] .* repmat(weight,n,1) ,2) .^ 0.5;   % D+ 与最大值的距离向量
D_N = sum([(Z - repmat(min(Z),n,1)) .^ 2 ] .* repmat(weight,n,1) ,2) .^ 0.5;   % D- 与最小值的距离向量
S = D_N ./ (D_P+D_N);    % 未归一化的得分
disp('最后的得分为:')
stand_S = S / sum(S)
[sorted_S,index] = sort(stand_S ,'descend')

% A = magic(5)  % 幻方矩阵
% M = magic(n)返回由1到n^2的整数构成并且总行数和总列数相等的n×n矩阵。阶次n必须为大于或等于3的标量。
% sort(A)若A是向量不管是列还是行向量,默认都是对A进行升序排列。sort(A)是默认的升序,而sort(A,'descend')是降序排序。
% sort(A)若A是矩阵,默认对A的各列进行升序排列
% sort(A,dim)
% dim=1时等效sort(A)
% dim=2时表示对A中的各行元素升序排列
% A = [2,1,3,8]
% Matlab中给一维向量排序是使用sort函数:sort(A),排序是按升序进行的,其中A为待排序的向量;
% 若欲保留排列前的索引,则可用 [sA,index] = sort(A,'descend') ,排序后,sA是排序好的向量,index是向量sA中对A的索引。
% sA  =  8     3     2     1
% index =  4     3     1     2


% % 注意:代码文件仅供参考,一定不要直接用于自己的数模论文中
% % 国赛对于论文的查重要求非常严格,代码雷同也算作抄袭

代码降重方法:

  1. 增加注释(甚至可以每一行都加注释)
  2. 替换变量名
  3. 增加恶心字符(emmmm…不作说明)
  4. 附录代码块变为图片

你可能感兴趣的:(数学建模,动态规划)