乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为 别人不会修改,所以不会上锁。
但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,采取在写时先读出当前版本号,然后加锁操作(比较跟上一次的版本号,如果一样则更新), 如果失败则要重复读-比较-写的操作。
java 中的乐观锁基本都是通过 CAS 操作实现的,CAS 是一种更新的原子操作,比较当前值跟传入值是否一样,一样则更新,否则失败。
悲观锁是就是悲观思想,即认为写多,遇到并发写的可能性高,每次去拿数据的时候都认为别人 会修改,所以每次在读写数据的时候都会上锁,这样别人想读写这个数据就会 block 直到拿到锁。
Java中的悲观锁就是Synchronized。AQS框架下的锁则是先尝试cas乐观锁去获取锁,获取不到, 才会转换为悲观锁,如 RetreenLock。
自旋锁原理非常简单,如果持有锁的线程能在很短时间内释放锁资源,那么那些等待竞争锁 的线程就不需要做内核态和用户态之间的切换进入阻塞挂起状态,它们只需要等一等(自旋), 等持有锁的线程释放锁后即可立即获取锁,这样就避免用户线程和内核的切换的消耗。
程序自旋是需要消耗 cup 的,说白了就是让 cup 在做无用功,如果一直获取不到锁,那线程也不能一直占用 cup 自旋做无用功,所以需要设定一个自旋等待的最大时间。
如果持有锁的线程执行的时间超过自旋等待的最大时间扔没有释放锁,就会导致其它争用锁的线程在最大等待时间内还是获取不到锁,这时争用线程会停止自旋进入阻塞状态。
自旋锁是为实现保护共享资源而提出一种锁机制。不会引起资源申请者睡眠,执行单元A目前占用资源,B在等待资源,B一直等待不会进入睡眠,即不会发生上下文切换,可提高性能。
自旋锁应用应当注意过多的耗费cpu资源,和死锁。有以下原则应当遵守
while(;;){
}
for(;;){
}
do{
b=1;
while(b){//开始b为真,进入循环
lock(bus);//多cput环境,锁总线,保证操作的原子性,再进入临界区,单cpu不必,有单
b = test_and_set(&lock);// 独原子级指令
unlock(bus);
}
//临界区
lock = 0;//放开锁
其余部分
}while(1)
自旋锁尽可能的减少线程的阻塞,这对于锁的竞争不激烈,且占用锁时间非常短的代码块来说性能能大幅度的提升,因为自旋的消耗会小于线程阻塞挂起再唤醒的操作的消耗,这些操作会导致线程发生两次上下文切换!
但是如果锁的竞争激烈,或者持有锁的线程需要长时间占用锁执行同步块,这时候就不适合使用自旋锁了,因为自旋锁在获取锁前一直都是占用 cpu 做无用功,占着 XX 不 XX,同时有大量线程在竞争一个锁,会导致获取锁的时间很长,线程自旋的消耗大于线程阻塞挂起操作的消耗, 其它需要 cup 的线程又不能获取到 cpu,造成 cpu 的浪费。所以这种情况下我们要关闭自旋锁。
自旋锁的目的是为了占着 CPU 的资源不释放,等到获取到锁立即进行处理。但是如何去选择 自旋的执行时间呢?如果自旋执行时间太长,会有大量的线程处于自旋状态占用 CPU 资源,进而 会影响整体系统的性能。因此自旋的周期选的额外重要!
JVM 对于自旋周期的选择,jdk1.5 这个限度是一定的写死的,在 1.6 引入了适应性自旋锁,适应 性自旋锁意味着自旋的时间不在是固定的了,而是由前一次在同一个锁上的自旋时间以及锁的拥 有者的状态来决定,基本认为一个线程上下文切换的时间是最佳的一个时间,同时 JVM 还针对当 前 CPU 的负荷情况做了较多的优化,如果平均负载小于 CPUs 则一直自旋,如果有超过(CPUs/2) 个线程正在自旋,则后来线程直接阻塞,如果正在自旋的线程发现 Owner 发生了变化则延迟自旋 时间(自旋计数)或进入阻塞,如果 CPU 处于节电模式则停止自旋,自旋时间的最坏情况是 CPU 的存储延迟(CPU A 存储了一个数据,到 CPU B 得知这个数据直接的时间差),自旋时会适当放 弃线程优先级之间的差异。
JDK1.6 中-XX:+UseSpinning 开启;
-XX:PreBlockSpin=10 为自旋次数;
JDK1.7 后,去掉此参数,由 jvm 控制。
synchronized 它可以把任意一个非 NULL 的对象当作锁。他属于独占式的悲观锁,同时属于可重 入锁。
Synchronized 作用范围
ReentantLock 继承接口 Lock 并实现了接口中定义的方法,他是一种可重入锁,除了能完成 Synchronized 所能完成的所有工作外,还提供了诸如可响应中断锁、可轮询锁请求、定时锁等避免多线程死锁的方法。
JVM 按随机、就近原则分配锁的机制则称为不公平锁。ReentrantLock在构造函数中提供了是否公平锁的初始化方式,默认为非公平锁。非公平锁实际执行的效率要远远超出公平锁,除程序有特殊需要,否则最常用非公平锁的分配机制。
// 非公平锁(默认)
private Lock lock = new ReentrantLock();
// 公平锁
private Lock lock = new ReentrantLock(true);
// 加锁
lock.lock();
// 解锁
lock.unlock();
公平锁指的是锁的分配机制是公平的,通常先对锁提出获取请求的线程会先被分配到锁, ReentrantLock 在构造函数中提供了是否公平锁的初始化方式来定义公平锁。
1. ReentrantLock通过方法 lock()与unlock()来进行加锁与解锁操作,与 synchronized会被JVM 自动解锁机制不同,ReentrantLock 加锁后需要手动进行解锁。为了避免程序出现异常而无法正常解锁的情况,使用 ReentrantLock 必须在 finally 控制块中进行解锁操作。
2. ReentrantLock 相比 synchronized 的优势是可中断、公平锁、多个锁。这种情况下需要使用 ReentrantLock。
public class MyService {
private Lock lock = new ReentrantLock();
//Lock lock=new ReentrantLock(true);//公平锁
//Lock lock=new ReentrantLock(false);//非公平锁
private Condition condition=lock.newCondition();//创建 Condition
public void testMethod() {
try {
lock.lock();//lock 加锁
//1:wait 方法等待:
//System.out.println("开始 wait");
condition.await();
//通过创建 Condition 对象来使线程 wait,必须先执行 lock.lock 方法获得锁
//:2:signal 方法唤醒
condition.signal();//condition 对象的 signal 方法可以唤醒 wait 线程
for (int i = 0; i < 5; i++) {
System.out.println("ThreadName=" + Thread.currentThread().getName()+ (" " + (i + 1)));
}
} catch (InterruptedException e) {
e.printStackTrace();
}
finally{
lock.unlock();
}
}
}
Semaphore 是一种基于计数的信号量。它可以设定一个阈值,基于此,多个线程竞争获取许可信 号,做完自己的申请后归还,超过阈值后,线程申请许可信号将会被阻塞。Semaphore 可以用来 构建一些对象池,资源池之类的,比如数据库连接池。
我们也可以创建计数为 1 的 Semaphore,将其作为一种类似互斥锁的机制,这也叫二元信号量, 表示两种互斥状态。
代码实现 它的用法如下:
// 创建一个计数阈值为 5 的信号量对象
// 只能 5 个线程同时访问
Semaphore semp = new Semaphore(5);
try { // 申请许可
semp.acquire();
try {
// 业务逻辑
} catch (Exception e) {
}
finally {
// 释放许可
semp.release();
}
} catch (InterruptedException e) {
}
Semaphore 基本能完成 ReentrantLock 的所有工作,使用方法也与之类似,通过 acquire()与 release()方法来获得和释放临界资源。
经实测,Semaphone.acquire()方法默认为可响应中断锁,与 ReentrantLock.lockInterruptibly()作用效果一致,也就是说在等待临界资源的过程中可以被 Thread.interrupt()方法中断。
此外,Semaphore 也实现了可轮询的锁请求与定时锁的功能,除了方法名 tryAcquire 与 tryLock 不同,其使用方法与 ReentrantLock 几乎一致。Semaphore 也提供了公平与非公平锁的机制,也 可在构造函数中进行设定。
Semaphore 的锁释放操作也由手动进行,因此与 ReentrantLock 一样,为避免线程因抛出异常而 无法正常释放锁的情况发生,释放锁的操作也必须在 finally 代码块中完成。
首先说明,此处 AtomicInteger ,一个提供原子操作的 Integer 的类。
常见的还有 AtomicBoolean、AtomicInteger、AtomicLong、AtomicReference 等,他们的实现原理相同,区别在与运算对象类型的不同。令人兴奋地,还可以通过AtomicReference
在多线程程序中,诸如++i 或 i++等运算不具有原子性,是不安全的线程操作之一。 通常我们会使用 synchronized 将该操作变成一个原子操作,但 JVM 为此类操作特意提供了一些 同步类,使得使用更方便,且使程序运行效率变得更高。通过相关资料显示,通常AtomicInteger 的性能是 ReentantLock 的好几倍。
本文里面讲的是广义上的可重入锁,而不是单指 JAVA 下的 ReentrantLock。可重入锁,也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响。在 JAVA 环境下 ReentrantLock 和 synchronized 都是可重入锁。
// 可重入锁例子
public static void syncBlock() {
new Thread(() -> {
synchronized (objectLock) {// lock
System.out.println("-----外层");
synchronized (objectLock) {
System.out.println("-----中层");
synchronized (objectLock) {
System.out.println("-----内层");
}
}
}//unlock
}, "t1").start();
}
加锁前检查是否有排队等待的线程,优先排队等待的线程,先来先得。
加锁时不考虑排队等待问题,直接尝试获取锁,获取不到自动到队尾等待
为了提高性能,Java 提供了读写锁,在读的地方使用读锁,在写的地方使用写锁,灵活控制,如 果没有写锁的情况下,读是无阻塞的,在一定程度上提高了程序的执行效率。读写锁分为读锁和写 锁,多个读锁不互斥,读锁与写锁互斥,这是由 jvm 自己控制的,你只要上好相应的锁即可。
ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock();
如果你的代码只读数据,可以很多人同时读,但不能同时写,那就上读锁。readWriteLock.readLock()
如果你的代码修改数据,只能有一个人在写,且不能同时读取,那就上写锁。readWriteLock.writeLock()、CopyOnWriteArrayList
总之,读的时候上 读锁,写的时候上写锁!
Java 中读写锁有个接口 java.util.concurrent.locks.ReadWriteLock ,也有具体的实现 ReentrantReadWriteLock。
java 并发包提供的加锁模式分为独占锁和共享锁。
独占锁模式下,每次只能有一个线程能持有锁,ReentrantLock 就是以独占方式实现的互斥锁。 独占锁是一种悲观保守的加锁策略,它避免了读/读冲突,如果某个只读线程获取锁,则其他读线 程都只能等待,这种情况下就限制了不必要的并发性,因为读操作并不会影响数据的一致性。
共享锁则允许多个线程同时获取锁,并发访问共享资源,如:ReadWriteLock。共享锁则是一种乐观锁,它放宽了加锁策略,允许多个执行读操作的线程同时访问共享资源。
Synchronized 是通过对象内部的一个叫做监视器锁(monitor)来实现的。但是监视器锁本质又 是依赖于底层的操作系统的 Mutex Lock 来实现的。而操作系统实现线程之间的切换这就需要从用 户态转换到核心态,这个成本非常高,状态之间的转换需要相对比较长的时间,这就是为什么 Synchronized 效率低的原因。因此,这种依赖于操作系统 Mutex Lock 所实现的锁我们称之为 “重量级锁”。JDK 中对 Synchronized 做的种种优化,其核心都是为了减少这种重量级锁的使用。 JDK1.6 以后,为了减少获得锁和释放锁所带来的性能消耗,提高性能,引入了“轻量级锁”和 “偏向锁”。
锁的状态总共有四种:无锁状态、偏向锁、轻量级锁和重量级锁。
随着锁的竞争,锁可以从偏向锁升级到轻量级锁,再升级的重量级锁(但是锁的升级是单向的, 也就是说只能从低到高升级,不会出现锁的降级)。
“轻量级”是相对于使用操作系统互斥量来实现的传统锁而言的。但是,首先需要强调一点的是, 轻量级锁并不是用来代替重量级锁的,它的本意是在没有多线程竞争的前提下,减少传统的重量 级锁使用产生的性能消耗。在解释轻量级锁的执行过程之前,先明白一点,轻量级锁所适应的场 景是线程交替执行同步块的情况,如果存在同一时间访问同一锁的情况,就会导致轻量级锁膨胀 为重量级锁。
Hotspot 的作者经过以往的研究发现大多数情况下锁不仅不存在多线程竞争,而且总是由同一线 程多次获得。偏向锁的目的是在某个线程获得锁之后,消除这个线程锁重入(CAS)的开销,看起 来让这个线程得到了偏护。引入偏向锁是为了在无多线程竞争的情况下尽量减少不必要的轻量级 锁执行路径,因为轻量级锁的获取及释放依赖多次 CAS 原子指令,而偏向锁只需要在置换 ThreadID 的时候依赖一次 CAS 原子指令(由于一旦出现多线程竞争的情况就必须撤销偏向锁,所 以偏向锁的撤销操作的性能损耗必须小于节省下来的 CAS 原子指令的性能消耗)。
轻量级锁是为了在线程交替执行同步块时提高性能,而偏向锁则是在只有一个线程执行同步块时进 一步提高性能。
分段锁也并非一种实际的锁,而是一种思想 ConcurrentHashMap 是学习分段锁的最好实践
只用在有线程安全要求的程序上加锁
将大对象(这个对象可能会被很多线程访问),拆成小对象,大大增加并行度,降低锁竞争。 降低了锁的竞争,偏向锁,轻量级锁成功率才会提高。最最典型的减小锁粒度的案例就是 ConcurrentHashMap。
最常见的锁分离就是读写锁 ReadWriteLock,根据功能进行分离成读锁和写锁,这样读读不互 斥,读写互斥,写写互斥,即保证了线程安全,又提高了性能,具体也请查看DK 并发包。
读写分离思想可以延伸,只要操作互不影响,锁就可以分离。比如 LinkedBlockingQueue 从头部取出,从尾部放数据。
通常情况下,为了保证多线程间的有效并发,会要求每个线程持有锁的时间尽量短,即在使用完 公共资源后,应该立即释放锁。但是,凡事都有一个度,如果对同一个锁不停的进行请求、同步 和释放,其本身也会消耗系统宝贵的资源,反而不利于性能的优化 。
锁消除是在编译器级别的事情。在即时编译器时,如果发现不可能被共享的对象,则可以消除这 些对象的锁操作,多数是因为程序员编码不规范引起。