Spark Stream操作Kafka总结

kafka集群搭建

搭建参考

https://www.toutiao.com/article/6496743889053942286/?log_from=d5d6394cf75d_1687599146327

 zk下载位置

国内:https://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/

国外:Apache ZooKeeper 

 kafka位置

国内:Index of /apache/kafka

国外:Apache Kafka

spark集群搭建

 搭建参考

https://www.toutiao.com/article/6690323260132819468/?log_from=b6bc7fd413909_1687599567164

Spark之三大集群模式—详解(3)-腾讯云开发者社区-腾讯云

下载位置

国内最新版本: Index of /apache/spark

国内历史版本:Index of /dist/spark

注意:历史版本下载位置如下

链接:Index of /apache

 Spark Stream操作Kafka总结_第1张图片

 standalone集群模式搭建

集群架构

Spark Stream操作Kafka总结_第2张图片

排除防火墙干扰

注意先关闭防火墙(测试环境)

systemctl stop firewalld.service
systemctl disable firewalld.service

集群规划

node01:master
node02:slave/worker  

/etc/hosts

192.168.10.159 node02
192.168.10.153 node01

配置免密登录

需要配置master到slave节点的免密登录

node01中:

ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
scp ~/.ssh/id_dsa.pub root@node02:/opt

node02中:

cat /opt/id_dsa.pub >> ~/.ssh/authorized_keys

安装java环境

如果选择在线安装可以使用

yum -y install java-1.8.0-openjdk*

修改配置

cd /root/spark-3.4.0-bin-hadoop3-scala2.13/conf

mv spark-env.sh.template spark-env.sh

vi spark-env.sh

#配置java环境变量(如果之前配置过了就不需要动了)
#指定spark Master的IP
export SPARK_MASTER_HOST=node01
#指定spark Master的端口
export SPARK_MASTER_PORT=7077

 vi  slaves 

node02

配置spark环境变量

/etc/profile

export SPARK_HOME=/root/spark-3.4.0-bin-hadoop3-scala2.13
export PATH=$PATH:$SPARK_HOME/bin

配置分发

scp -r /root/spark-3.4.0-bin-hadoop3-scala2.13 node02:/root/

启动和停止

cd /root/spark-3.4.0-bin-hadoop3-scala2.13/sbin/

集群启动和停止

 在主节点上启动spark集群
./start-all.sh 
在主节点上停止spark集群
./stop-all.sh

单独启动和停止

在 master 安装节点上启动和停止 master:
start-master.sh
stop-master.sh
在 Master 所在节点上启动和停止worker(work指的是slaves 配置文件中的主机名)

start-slaves.sh
stop-slaves.sh

集群检查

web界面查看

正常启动spark集群后,查看spark的web界面,查看相关信息。

注意也有可能是8081端口。

http://node01:8080/

 Spark Stream操作Kafka总结_第3张图片

jps查看

在master节点上jps可以看到Master进程,在slave节点上jps可以看到Worker进程,可以初步判定集群是否启动成功。

使用样例

官方首选推荐使用scala,也可以使用更加熟悉的java或者python

scala环境准备

下载安装scala

IDEA新建Scala+Maven工程步骤指南(2020.09.21)_idea创建scala maven项目_jing_zhong的博客-CSDN博客

maven依赖

注意:spark相关的依赖打包时候可以不用打入jar包

 
        
        
            org.apache.spark
            spark-streaming-kafka-0-10_2.13
            3.4.0
        

        
            org.apache.spark
            spark-streaming_2.13
            3.4.0
        

        
        
            org.apache.spark
            spark-core_2.13
            3.4.0
        
        
        
            org.apache.spark
            spark-sql_2.13
            3.4.0
            provided
        

        
            org.json
            json
            20210307
        

    

scala读取kafka数据并打印结果 

KafaDemo 

import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe

object KafaDemo {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[2]").setAppName("KafaDemo")
    //刷新时间设置为1秒
    val ssc = new StreamingContext(conf, Seconds(1))

    //消费者配置
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "192.168.10.153:9092", //kafka集群地址
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "group", //消费者组名
      "auto.offset.reset" -> "latest", //latest自动重置偏移量为最新的偏移量
      "enable.auto.commit" -> (false: java.lang.Boolean)) //如果是true,则这个消费者的偏移量会在后台自动提交
    val topics = Array("top1") //消费主题,可以同时消费多个
    //创建DStream,返回接收到的输入数据
    val stream = KafkaUtils.createDirectStream[String, String](
      ssc,
      PreferConsistent,
      Subscribe[String, String](topics, kafkaParams))
    //打印获取到的数据,因为1秒刷新一次,所以数据长度大于0时才打印
    stream.foreachRDD(f => {
      if (f.count > 0)
        f.foreach(f => println(f.value()))
    })
    ssc.start();
    ssc.awaitTermination();
  }
}

scala解析json并保存数据

scala读取kafka的json数据,处理以后添加字段,保存数据入一个新的topic

KafkaStreamingExample 

import org.apache.spark.SparkConf
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka010._
import org.apache.kafka.common.serialization.StringDeserializer
import org.json4s.jackson.JsonMethods._
import org.json4s.JsonDSL._
import org.json4s._

object KafkaStreamingExample {
  implicit val formats: Formats = DefaultFormats
  def main(args: Array[String]): Unit = {
    // 创建SparkConf对象
    val sparkConf = new SparkConf().setAppName("KafkaStreamingExample").setMaster("local[*]")

    // 创建StreamingContext对象
    val ssc = new StreamingContext(sparkConf, Seconds(5))

    // 设置Kafka参数
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "192.168.10.153:9092",  // Kafka broker地址
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "spark-consumer-group",  // 消费者组ID
      "auto.offset.reset" -> "latest",  // 从最新的offset开始读取数据
      "enable.auto.commit" -> (false: java.lang.Boolean)  // 关闭自动提交offset
    )

    // 设置要读取的Kafka topic
    val topics = Array("input_topic")

    // 创建DStream,从Kafka读取数据
    val kafkaStream = KafkaUtils.createDirectStream[String, String](
      ssc,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams)
    )

    // 解析每条数据的value值为JSON对象
    val parsedStream = kafkaStream.map(record => {
      implicit val formats = DefaultFormats
      parse(record.value)
    })

    // 过滤出age>20的数据
    val filteredStream = parsedStream.filter(json => (json \ "age").extract[Int] > 20)

    // 增加性别字段
    val genderStream = filteredStream.map(json => {
      val name = (json \ "name").extract[String]
      val gender = if (name.endsWith("a")) "female" else "male"
      json.asInstanceOf[JObject] ~ ("gender" -> JString(gender))
    })

    // 将新数据写入另一个Kafka topic中
    genderStream.foreachRDD(rdd => {
      rdd.foreachPartition(iter => {
        val producer = createKafkaProducer()  // 创建Kafka生产者

        iter.foreach(json => {
          val value = compact(render(json))
          val record = new org.apache.kafka.clients.producer.ProducerRecord[String, String]("output_topic", value)
          producer.send(record)  // 发送数据到Kafka
        })

        producer.close()  // 关闭Kafka生产者
      })
    })

    // 启动StreamingContext
    ssc.start()
    ssc.awaitTermination()
  }

  def createKafkaProducer(): org.apache.kafka.clients.producer.KafkaProducer[String, String] = {
    val props = new java.util.Properties()
    props.put("bootstrap.servers", "192.168.10.153:9092")  // Kafka broker地址
    props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
    props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
    new org.apache.kafka.clients.producer.KafkaProducer[String, String](props)
  }
}

java解析json并打印结果

java读取kafka数据,处理以后添加字段打印结果

 KafkaStreamingExample4 

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.json.JSONObject;

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

public class KafkaStreamingExample4 {
    public static void main(String[] args) throws Exception {
        SparkConf conf = new SparkConf()
//                .set("spark.streaming.logLevel","ERROR")
                .setAppName("Kafka Streaming Example")
                .setMaster("local[*]");

        JavaStreamingContext jssc = new JavaStreamingContext(conf, new Duration(1000));

        Map kafkaParams = new HashMap<>();
        kafkaParams.put("bootstrap.servers", "192.168.10.153:9092");
        kafkaParams.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        kafkaParams.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        kafkaParams.put("group.id", "spark-streaming");
        kafkaParams.put("auto.offset.reset", "latest");

        String topic = "input_topic";
        JavaInputDStream> stream = KafkaUtils.createDirectStream(
                jssc,
                LocationStrategies.PreferConsistent(),
                ConsumerStrategies.Subscribe(Collections.singleton(topic), kafkaParams)
        );

        stream.map(record -> record.value())
                .map(val->{
                    JSONObject json = new JSONObject(val);
                    json.put("tag","tagxxxxx");
                    return json.toString();
                })
                .print();

        jssc.start();
        jssc.awaitTermination();
    }
}

java解析json并保存结果

java读取kafka的json数据,处理以后添加字段,保存数据入一个新的topic

KafkaSparkStreamingExample3 

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.spark.SparkConf;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.*;
import org.json.JSONException;
import org.json.JSONObject;

import java.util.*;

public class KafkaSparkStreamingExample3 {
    public static void main(String[] args) throws InterruptedException {
        // 设置 Spark Streaming 应用的名称和 master
        SparkConf conf = new SparkConf().setAppName("KafkaSparkStreamingExample").setMaster("local[*]");
        // 创建 Spark Streaming 上下文对象
        JavaStreamingContext streamingContext = new JavaStreamingContext(conf, Durations.seconds(1));
        // 设置 Kafka 相关参数
        Map kafkaParams = new HashMap<>();
        kafkaParams.put("bootstrap.servers", "192.168.10.153:9092");
        kafkaParams.put("key.deserializer", StringDeserializer.class);
        kafkaParams.put("value.deserializer", StringDeserializer.class);
        kafkaParams.put("group.id", "spark-streaming");
        kafkaParams.put("auto.offset.reset", "latest");
        kafkaParams.put("enable.auto.commit", false);

        // 设置要从 Kafka 读取的 topic
        Collection topics = Arrays.asList("input_topic");

        // 创建 Kafka direct stream
        JavaInputDStream> stream =
                KafkaUtils.createDirectStream(streamingContext,
                        LocationStrategies.PreferConsistent(),
                        ConsumerStrategies.Subscribe(topics, kafkaParams));

        // 解析 Kafka 中的数据
        stream.foreachRDD(rdd -> {
//            OffsetRange[] offsetRanges = ((CanCommitOffsets) rdd.rdd()).offsetRanges();

            OffsetRange[] offsetRanges = ((HasOffsetRanges) rdd.rdd()).offsetRanges();

            rdd.foreachPartition(records -> {
                while (records.hasNext()) {
                    ConsumerRecord record = records.next();
                    String data = record.value();
                    System.out.println("Received data: " + data);

                    // 解析 JSON 数据
                    try {
                        JSONObject json = new JSONObject(data);
                        String name = json.getString("name");
                        int age = json.getInt("age");

                        // 过滤年龄大于20的数据
                        if (age > 20) {
                            String gender = getGender(name);
                            json.put("gender", gender);

                            // 将结果写入新的 Kafka topic
                            writeToKafka(json.toString(), "output_topic");
                        }
                    } catch (JSONException e) {
                        e.printStackTrace();
                    }
                }
            });

            // 提交消费的offset
            ((CanCommitOffsets) stream.inputDStream()).commitAsync(offsetRanges);
        });

        // 启动 Spark Streaming 应用程序
        streamingContext.start();

        // 等待程序运行结束
        streamingContext.awaitTermination();
    }

    private static void writeToKafka(String data, String topic) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "192.168.10.153:9092");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        KafkaProducer producer = new KafkaProducer<>(props);
        ProducerRecord record = new ProducerRecord<>(topic, data);
        producer.send(record);
        producer.flush();
        System.out.println("Data written to Kafka: " + data);
    }

    private static String getGender(String name) {
        // 根据名字判断性别
        // 在此处添加你的逻辑判断代码
        return "unknown";
    }
}

验证结果

./bin/kafka-console-producer.sh --bootstrap-server 192.168.10.153:9092 --topic input_topic

测试数据

{"name":"bob","id":1,"age":23}
{"name":"tom","id":1,"age":21}
{"name":"bob","id":1,"age":5}
{"name":"jack","id":1,"age":45}

查看结果

./kafka-console-consumer.sh --bootstrap-server 127.0.0.1:9092 --topic output_topic

来源

spark中文文档:http://spark.apachecn.org/#/ 

你可能感兴趣的:(kafka,spark,大数据,spark,stream)