资料来源:尚硅谷ClickHouse
官方文档:什么是ClickHouse? | ClickHouse Docs
ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的列式存储数据库(DBMS),使用 C++语言编写,主要用于在线分析处理查询(OLAP),能够使用 SQL 查询实时生成分析数据报告。
以下面的表为例:
Id |
Name |
Age |
1 |
张三 |
18 |
2 |
李四 |
22 |
3 |
王五 |
34 |
1)采用行式存储时,数据在磁盘上的组织结构为:
好处是想查某个人所有的属性时,可以通过一次磁盘查找加顺序读取就可以。
但是当想查所有人的年龄时,需要不停的查找,或者全表扫描才行,遍历的很多数据都是不需要的。
2)采用列式存储时,数据在磁盘上的组织结构为:
这时想查所有人的年龄只需把年龄那一列拿出来就可以了
3)列式储存的好处:
几乎覆盖了标准 SQL 的大部分语法,包括 DDL 和 DML,以及配套的各种函数,用户管理及权限管理,数据的备份与恢复。
ClickHouse 和 MySQL 类似,把表级的存储引擎插件化,根据表的不同需求可以设定不同的存储引擎。目前包括合并树、日志、接口和其他四大类 20 多种引擎。
ClickHouse 采用类 LSM Tree的结构,数据写入后定期在后台 Compaction。
通过类 LSM tree的结构,ClickHouse 在数据导入时全部是顺序 append 写,写入后数据段不可更改,在后台compaction 时也是多个段 merge sort 后顺序写回磁盘。
顺序写的特性,充分利用了磁盘的吞吐能力,即便在 HDD 上也有着优异的写入性能。
官方公开 benchmark 测试显示能够达到 50MB-200MB/s 的写入吞吐能力,按照每行100Byte 估算,大约相当于 50W-200W 条/s 的写入速度。
ClickHouse 将数据划分为多个 partition,每个 partition 再进一步划分为多个 indexgranularity(索引粒度),然后通过多个 CPU核心分别处理其中的一部分来实现并行数据处理。
在这种设计下,单条 Query 就能利用整机所有 CPU。极致的并行处理能力,极大的降低了查询延时。所以,ClickHouse 即使对于大量数据的查询也能够化整为零平行处理。
但是有一个弊端就是对于单条查询使用多 cpu,就不利于同时并发多条查询。所以对于高 qps 的查询业务,ClickHouse 并不是强项。
某网站精华帖中,对几款数据库做了性能对比。
1)单表查询
2)关联查询
结论: ClickHouse 像很多 OLAP 数据库一样,单表查询速度由于关联查询,而且 ClickHouse的两者差距更为明显。
1、确定防火墙处于关闭状态
2、CentOS打开取消文件数限制
(1)在 /etc/security/limits.conf 文件的末尾加入以下内容
[xiang ~]$ sudo vim /etc/security/limits.conf
* soft nofile 65536
* hard nofile 65536
* soft nproc 131072
* hard nproc 131072
(2)在/etc/security/limits.d/20-nproc.conf 文件的末尾加入以下内容
[xiang ~]$ sudo vim /etc/security/limits.d/20-nproc.conf
* soft nofile 65536
* hard nofile 65536
* soft nproc 131072
* hard nproc 131072
3、安装依赖
[xiang ~]$ sudo yum install -y libtool
[xiang ~]$ sudo yum install -y *unixODBC*
4、CentOS取消SELINUX
修改/etc/selinux/config 中的 SELINUX=disabled
[xiang ~]$ sudo vim /etc/selinux/config
SELINUX=disabled
官网:Fast Open-Source OLAP DBMS - ClickHouse
下载地址:Index of /repos/clickhouse/stable/el7
1、创建clickhouse目录
[xiang software]$ mkdir clickhouse
2、将下载好的rpm包上传
3、安装rpm包
[xiang clickhouse]$ sudo rpm -ivh *.rpm
sudo rpm -qa|grep clickhouse 查看安装情况
4、修改配置文件
[xiang clickhouse]$ sudo vim /etc/clickhouse-server/config.xml
把 :: 的注释打开,这样的话才能让 ClickHouse 被除本机以外的服务器访问
在这个文件中,有 ClickHouse 的一些默认路径配置,比较重要的
数据文件路径:/var/lib/clickhouse/
日志文件路径:/var/log/clickhouse-server/clickhouse-server.log
5、启动server
[xiang clickhouse]$ sudo systemctl start clickhouse-server
6、关闭开启自启
[xiang clickhouse]$sudo systemctl disable clickhouse-server
7、使用client连接
[xiang clickhouse]$ clickhouse-client -m
-m :可以在命令窗口输入多行命令
1、创建clickhouse目录
2、进入目录执行下载: curl https://clickhouse.com/ | sh
mbp:clickhouse xiang$ curl https://clickhouse.com/ | sh
3、启动clickHouse-server
mbp:clickhouse xiang$ ./clickhouse server
4、使用client连接
mbp:clickhouse xiang$ ./clickhouse client
ClickHouse client version 23.6.1.1122 (official build).
Connecting to localhost:9000 as user default.
Connected to ClickHouse server version 23.6.1 revision 54464.
Warnings:
* Maximum number of threads is lower than 30000. There could be problems with handling a lot of simultaneous queries.
mbp :)
固定长度的整型,包括有符号整型或无符号整型。
无符号整型范围(0~2n-1):
使用场景: 个数、数量、也可以存储型 id。
Float32 - float
Float64 – double
建议尽可能以整数形式存储数据。例如,将固定精度的数字转换为整数值,如时间用毫秒为单位表示,因为浮点型进行计算时可能引起四舍五入的误差。
使用场景:一般数据值比较小,不涉及大量的统计计算,精度要求不高的时候。比如保存商品的重量。
没有单独的类型来存储布尔值。可以使用 UInt8 类型,取值限制为 0 或 1。
有符号的浮点数,可在加、减和乘法运算过程中保持精度。
对于除法,最低有效数字会被丢弃(不舍入)。
有三种声明:
s 标识小数位
使用场景: 一般金额字段、汇率、利率等字段为了保证小数点精度,都使用 Decimal
进行存储。
与 String 相比,极少会使用 FixedString,因为使用起来不是很方便。
使用场景:名称、文字描述、字符型编码。
固定长度的可以保存一些定长的内容,比如一些编码,性别等但是考虑到一定的变化风险,带来收益不够明显,所以定长字符串使用意义有限。
包括 Enum8 和 Enum16 类型。Enum 保存 'string'= integer 的对应关系。
Enum8 用 'String'= Int8 对描述。
Enum16 用 'String'= Int16 对描述。
1)用法演示
创建一个带有一个枚举 Enum8('hello' = 1, 'world' = 2) 类型的列
CREATE TABLE t_enum
(
x Enum8('hello' = 1, 'world' = 2)
)
ENGINE = TinyLog;
2)这个 x 列只能存储类型定义中列出的值:'hello'或'world'
INSERT INTO t_enum VALUES ('hello'), ('world'), ('hello');
3)如果尝试保存任何其他值,ClickHouse 抛出异常
4)如果需要看到对应行的数值,则必须将 Enum 值转换为整数类型
SELECT CAST(x, 'Int8') FROM t_enum;
使用场景:对一些状态、类型的字段算是一种空间优化,也算是一种数据约束。但是实际使用中往往因为一些数据内容的变化增加一定的维护成本,甚至是数据丢失问题。所以谨慎使用。
目前 ClickHouse 有三种时间类型
日期类型,用两个字节存储,表示从 1970-01-01 (无符号) 到当前的日期值。
还有很多数据结构,可以参考官方文档:https://clickhouse.yandex/docs/zh/data_types/
Array(T):由 T 类型元素组成的数组。
T 可以是任意类型,包含数组类型。 但不推荐使用多维数组,ClickHouse 对多维数组
的支持有限。例如,不能在 MergeTree 表中存储多维数组。
(1)创建数组方式 1,使用 array 函数
array(T)
hadoop102 :) SELECT array(1, 2) AS x, toTypeName(x) ;
(2)创建数组方式 2:使用方括号
[]
hadoop102 :) SELECT [1, 2] AS x, toTypeName(x);
表引擎是 ClickHouse 的一大特色。可以说, 表引擎决定了如何存储表的数据。包括:
表引擎的使用方式就是必须显式在创建表时定义该表使用的引擎,以及引擎使用的相关参数。
特别注意:引擎的名称大小写敏感.
以列文件的形式保存在磁盘上,不支持索引,没有并发控制。一般保存少量数据的小表,生产环境上作用有限。可以用于平时练习测试用。
如:
create table t_tinylog ( id String, name String) engine=TinyLog;
内存引擎,数据以未压缩的原始形式直接保存在内存当中,服务器重启数据就会消失。读写操作不会相互阻塞,不支持索引。简单查询下有非常非常高的性能表现(超过 10G/s)。
一般用到它的地方不多,除了用来测试,就是在需要非常高的性能,同时数据量又不太大(上限大概 1 亿行)的场景。
ClickHouse 中最强大的表引擎当属 MergeTree(合并树)引擎及该系列(*MergeTree)中的其他引擎,支持索引和分区,地位可以相当于 innodb 之于 Mysql。
而且基于 MergeTree,还衍生除了很多小弟,也是非常有特色的引擎。
1)建表语句
create table t_order_mt(
id UInt32,
sku_id String,
total_amount Decimal(16,2),
create_time Datetime
) engine =MergeTree
partition by toYYYYMMDD(create_time)
primary key (id)
order by (id,sku_id);
2)插入数据
insert into t_order_mt values
(101,'sku_001',1000.00,'2020-06-01 12:00:00') ,
(102,'sku_002',2000.00,'2020-06-01 11:00:00'),
(102,'sku_004',2500.00,'2020-06-01 12:00:00'),
(102,'sku_002',2000.00,'2020-06-01 13:00:00'),
(102,'sku_002',12000.00,'2020-06-01 13:00:00'),
(102,'sku_002',600.00,'2020-06-02 12:00:00');
MergeTree 其实还有很多参数(绝大多数用默认值即可),但是三个参数是更加重要的,也涉及了关于 MergeTree 的很多概念。
1)作用
学过 hive 的应该都不陌生,分区的目的主要是降低扫描的范围,优化查询速度
2)如果不填
只会使用一个分区。
3)分区目录
MergeTree 是以 列文件+索引文件+表定义文件 组成的,但是如果设定了分区那么这些文件就会保存到不同的分区目录中。
4)并行
分区后,面对涉及跨分区的查询统计,ClickHouse 会以分区为单位并行处理。
5)数据写入与分区合并
任何一个批次的数据写入都会产生一个临时分区,不会纳入任何一个已有的分区。写入后的某个时刻(大概 10-15 分钟后),ClickHouse 会自动执行合并操作(等不及也可以手动通过 optimize 执行),把临时分区的数据,合并到已有分区中。
optimize table xxxx final;
6)例如
再次执行上面的插入操作
insert into t_order_mt values
(101,'sku_001',1000.00,'2020-06-01 12:00:00') ,
(102,'sku_002',2000.00,'2020-06-01 11:00:00'),
(102,'sku_004',2500.00,'2020-06-01 12:00:00'),
(102,'sku_002',2000.00,'2020-06-01 13:00:00'),
(102,'sku_002',12000.00,'2020-06-01 13:00:00'),
(102,'sku_002',600.00,'2020-06-02 12:00:00');
查看数据并没有纳入任何分区
手动 optimize 之后
hadoop102 :) optimize table t_order_mt final;
再次查询
ClickHouse 中的主键,和其他数据库不太一样,它只提供了数据的一级索引,但是却不是唯一约束。这就意味着是可以存在相同 primary key 的数据的。
主键的设定主要依据是查询语句中的 where 条件。
根据条件通过对主键进行某种形式的二分查找,能够定位到对应的 index granularity,避免了全表扫描。
index granularity: 直接翻译的话就是索引粒度,指在稀疏索引中两个相邻索引对应数据的间隔。ClickHouse 中的 MergeTree 默认是 8192。官方不建议修改这个值,除非该列存在大量重复值,比如在一个分区中几万行才有一个不同数据。
稀疏索引:
稀疏索引的好处就是可以用很少的索引数据,定位更多的数据,代价就是只能定位到索引粒度的第一行,然后再进行进行一点扫描。
order by 设定了分区内的数据按照哪些字段顺序进行有序保存。
order by 是 MergeTree 中唯一一个必填项,甚至比 primary key 还重要,因为当用户不设置主键的情况,很多处理会依照 order by 的字段进行处理(比如后面会讲的去重和汇总)。
要求:主键必须是 order by 字段的前缀字段。比如 order by 字段是 (id,sku_id) 那么主键必须是 id 或者(id,sku_id)
目前在 ClickHouse 的官网上二级索引的功能在 v20.1.2.4 之前是被标注为实验性的,在这个版本之后默认是开启的。
1)老版本使用二级索引前需要增加设置
是否允许使用实验性的二级索引(v20.1.2.4 开始,这个参数已被删除,默认开启)
set allow_experimental_data_skipping_indices=1;
2)创建测试表
create table t_order_mt2(
id UInt32,
sku_id String,
total_amount Decimal(16,2),
create_time Datetime,
INDEX a total_amount TYPE minmax GRANULARITY 5
) engine =MergeTree
partition by toYYYYMMDD(create_time)
primary key (id)
order by (id, sku_id);
其中 GRANULARITY N 是设定二级索引对于一级索引粒度的粒度。
3)插入数据
insert into t_order_mt2 values
(101,'sku_001',1000.00,'2020-06-01 12:00:00') ,
(102,'sku_002',2000.00,'2020-06-01 11:00:00'),
(102,'sku_004',2500.00,'2020-06-01 12:00:00'),
(102,'sku_002',2000.00,'2020-06-01 13:00:00'),
(102,'sku_002',12000.00,'2020-06-01 13:00:00'),
(102,'sku_002',600.00,'2020-06-02 12:00:00');
4)对比效果
那么在使用下面语句进行测试,可以看出二级索引能够为非主键字段的查询发挥作用。
clickhouse-client --send_logs_level=trace <<< 'select* from t_order_mt2 where total_amount > toDecimal32(900., 2)';
TTL 即 Time To Live,MergeTree 提供了可以管理数据表或者列的生命周期的功能。
1)列级别 TTL
(1)创建测试表
create table t_order_mt3(
id UInt32,
sku_id String,
total_amount Decimal(16,2) TTL create_time+interval 10 SECOND,
create_time Datetime
) engine =MergeTree
partition by toYYYYMMDD(create_time)
primary key (id)
order by (id, sku_id);
(2)插入数据(注意:根据实际时间改变)
insert into t_order_mt3 values
(106,'sku_001',1000.00,'2023-07-04 19:57:00'),
(107,'sku_002',2000.00,'2023-07-04 19:57:00'),
(110,'sku_003',600.00,'2023-07-04 19:57:00');
(3)手动合并,查看效果 到期后,指定的字段数据归 0
2)表级 TTL
下面的这条语句是数据会在 create_time 之后 10 秒丢失
-- 表记录过期
create table t_order_mt4
(
id UInt32,
sku_id String,
total_amount Decimal(16, 2) ,
create_time Datetime
) engine = MergeTree
partition by toYYYYMMDD(create_time)
primary key (id)
order by (id, sku_id)
TTL create_time + interval 10 SECOND;
alter table t_order_mt3 MODIFY TTL create_time + INTERVAL 10 SECOND;
涉及判断的字段必须是 Date 或者 Datetime 类型,推荐使用分区的日期字段。
能够使用的时间周期:
ReplacingMergeTree 是 MergeTree 的一个变种,它存储特性完全继承 MergeTree,只是多了一个去重的功能。
尽管 MergeTree 可以设置主键,但是 primary key 其实没有唯一约束的功能。如果你想处理掉重复的数据,可以借助这个 ReplacingMergeTree。
1)去重时机
数据的去重只会在合并的过程中出现。合并会在未知的时间在后台进行,所以无法预先作出计划。有一些数据可能仍未被处理。
2)去重范围
如果表经过了分区,去重只会在分区内部进行去重,不能执行跨分区的去重。所以ReplacingMergeTree 能力有限, ReplacingMergeTree 适用于在后台清除重复的数据以节省空间,但是它不保证没有重复的数据出现。
3)案例演示
(1)创建表
create table t_order_rmt(
id UInt32,
sku_id String,
total_amount Decimal(16,2) ,
create_time Datetime
) engine =ReplacingMergeTree(create_time)
partition by toYYYYMMDD(create_time)
primary key (id)
order by (id, sku_id);
ReplacingMergeTree() 填入的参数为版本字段,重复数据保留版本字段值最大的。
如果不填版本字段,默认按照插入顺序保留最后一条。
(2)向表中插入数据
insert into t_order_rmt values
(101,'sku_001',1000.00,'2020-06-01 12:00:00') ,
(102,'sku_002',2000.00,'2020-06-01 11:00:00'),
(102,'sku_004',2500.00,'2020-06-01 12:00:00'),
(102,'sku_002',2000.00,'2020-06-01 13:00:00'),
(102,'sku_002',12000.00,'2020-06-01 13:00:00'),
(102,'sku_002',600.00,'2020-06-02 12:00:00');
(3)执行第一次查询
(4)手动合并
OPTIMIZE TABLE t_order_rmt FINAL;
(5)再执行一次查询
select * from t_order_rmt;
4)通过测试得到结论
对于不查询明细,只关心以维度进行汇总聚合结果的场景。如果只使用普通的MergeTree的话,无论是存储空间的开销,还是查询时临时聚合的开销都比较大。
ClickHouse 为了这种场景,提供了一种能够“预聚合”的引擎 SummingMergeTree
1)案例演示
(1)创建表
create table t_order_smt(
id UInt32,
sku_id String,
total_amount Decimal(16,2) ,
create_time Datetime
) engine =SummingMergeTree(total_amount)
partition by toYYYYMMDD(create_time)
primary key (id)
order by (id,sku_id );
(2)插入数据
insert into t_order_smt values
(101,'sku_001',1000.00,'2020-06-01 12:00:00'),
(102,'sku_002',2000.00,'2020-06-01 11:00:00'),
(102,'sku_004',2500.00,'2020-06-01 12:00:00'),
(102,'sku_002',2000.00,'2020-06-01 13:00:00'),
(102,'sku_002',12000.00,'2020-06-01 13:00:00'),
(102,'sku_002',600.00,'2020-06-02 12:00:00');
(3)执行查询
2)通过结果可以得到以下结论
3)开发建议
设计聚合表的话,唯一键值、流水号可以去掉,所有字段全部是维度、度量或者时间戳。
4)问题
能不能直接执行以下 SQL 得到汇总值
select total_amount from XXX where province_name=’’ and create_date=’xxx’
不行,可能会包含一些还没来得及聚合的临时明细
如果要是获取汇总值,还是需要使用 sum 进行聚合,这样效率会有一定的提高,但本身 ClickHouse 是列式存储的,效率提升有限,不会特别明显。
select sum(total_amount) from province_name=’’ and create_date=‘xxx’
基本上来说传统关系型数据库(以 MySQL 为例)的 SQL 语句,ClickHouse 基本都支持,这里不会从头讲解 SQL 语法只介绍 ClickHouse 与标准 SQL(MySQL)不一致的地方。
基本与标准 SQL(MySQL)基本一致
(1)标准
insert into [table_name] values(…),(….)
(2)从表到表的插入
insert into [table_name] select a,b,c from [table_name_2]
ClickHouse 提供了 Delete 和 Update 的能力,这类操作被称为 Mutation 查询,它可以看做 Alter 的一种。
虽然可以实现修改和删除,但是和一般的 OLTP 数据库不一样,Mutation 语句是一种很“重”的操作,而且不支持事务。
“重”的原因主要是每次修改或者删除都会导致放弃目标数据的原有分区,重建新分区。所以尽量做批量的变更,不要进行频繁小数据的操作。
(1)删除操作
alter table t_order_smt delete where sku_id ='sku_001';
(2)修改操作
alter table t_order_smt update total_amount=toDecimal32(2000.00,2) where id=102;
由于操作比较“重”,所以 Mutation 语句分两步执行,同步执行的部分其实只是进行新增数据新增分区和并把旧分区打上逻辑上的失效标记。
直到触发分区合并的时候,才会删除旧数据释放磁盘空间,一般不会开放这样的功能给用户,由管理员完成.
ClickHouse 基本上与标准 SQL 差别不大
(1)插入数据
alter table t_order_mt delete where 1=1;
insert into t_order_mt values
(101,'sku_001',1000.00,'2020-06-01 12:00:00'),
(101,'sku_002',2000.00,'2020-06-01 12:00:00'),
(103,'sku_004',2500.00,'2020-06-01 12:00:00'),
(104,'sku_002',2000.00,'2020-06-01 12:00:00'),
(105,'sku_003',600.00,'2020-06-02 12:00:00'),
(106,'sku_001',1000.00,'2020-06-04 12:00:00'),
(107,'sku_002',2000.00,'2020-06-04 12:00:00'),
(108,'sku_004',2500.00,'2020-06-04 12:00:00'),
(109,'sku_002',2000.00,'2020-06-04 12:00:00'),
(110,'sku_003',600.00,'2020-06-01 12:00:00');
(2)with rollup:从右至左去掉维度进行小计
select id , sku_id,sum(total_amount) from t_order_mt group by id,sku_id with rollup;
(3)with cube : 从右至左去掉维度进行小计,再从左至右去掉维度进行小计
select id , sku_id,sum(total_amount) from t_order_mt group by id,sku_id with cube;
(4)with totals: 只计算合计
select id , sku_id,sum(total_amount) from t_order_mt group by id,sku_id with totals;
同 MySQL 的修改字段基本一致
1)新增字段
alter table tableName add column newcolname String after col1;
2)修改字段类型
alter table tableName modify column newcolname String;
3)删除字段
alter table tableName drop column newcolname;
clickhouse-client --query "select * from t_order_mt where create_time='2020-06-01 12:00:00'" --format CSVWithNames > test.csv
更多支持格式参照:Formats for Input and Output Data | ClickHouse Docs
副本的目的主要是保障数据的高可用性,即使一台 ClickHouse 节点宕机,那么也可以从其他服务器获得相同的数据。
Data Replication | ClickHouse Docs
(1)启动 zookeeper 集群
(2)在 hadoop102 的/etc/clickhouse-server/config.d 目录下创建一个名为 metrika.xml的配置文件,内容如下:
注:也可以不创建外部文件,直接在 config.xml 中指定
hadoop102
2181
hadoop103
2181
hadoop104
2181
(3)同步到 hadoop103 和 hadoop104 上
sudo /home/atguigu/bin/xsync /etc/clickhouse-server/config.d/metrika.xml
(4)在 hadoop102 的/etc/clickhouse-server/config.xml 中增加
/etc/clickhouse-server/config.d/metrika.xml
(5)同步到 hadoop103 和 hadoop104 上
sudo /home/atguigu/bin/xsync /etc/clickhouse-server/config.xml
分别在 hadoop102 和 hadoop103 上启动 ClickHouse 服务
注意:我们演示副本操作只需要在 hadoop102 和 hadoop103 两台服务器即可,上面的操作,我们 hadoop104 可以不用同步,我们这里为了保证集群中资源的一致性,做了同步。
(6)在 hadoop102 和 hadoop103 上分别建表
副本只能同步数据,不能同步表结构,所以我们需要在每台机器上自己手动建表
①hadoop102
create table t_order_rep2 (
id UInt32,
sku_id String,
total_amount Decimal(16,2),
create_time Datetime
) engine =ReplicatedMergeTree('/clickhouse/table/01/t_order_rep','rep_102')
partition by toYYYYMMDD(create_time)
primary key (id)
order by (id,sku_id);
②hadoop103
create table t_order_rep2 (
id UInt32,
sku_id String,
total_amount Decimal(16,2),
create_time Datetime
) engine =ReplicatedMergeTree('/clickhouse/table/01/t_order_rep','rep_103')
partition by toYYYYMMDD(create_time)
primary key (id)
order by (id,sku_id);
③参数解释
ReplicatedMergeTree 中,
第一个参数是分片的 zk_path 一般按照:/clickhouse/table/{shard}/{table_name} 的格式写,如果只有一个分片就写 01 即可。
第二个参数是副本名称,相同的分片副本名称不能相同。
(7)在 hadoop102 上执行 insert 语句
insert into t_order_rep2 values
(101,'sku_001',1000.00,'2020-06-01 12:00:00'),
(102,'sku_002',2000.00,'2020-06-01 12:00:00'),
(103,'sku_004',2500.00,'2020-06-01 12:00:00'),
(104,'sku_002',2000.00,'2020-06-01 12:00:00'),
(105,'sku_003',600.00,'2020-06-02 12:00:00');
(8)在 hadoop103 上执行 select,可以查询出结果,说明副本配置正确