- 大模型密度定律:AI代码生成器将迎来爆发式增长?
前端
近年来,人工智能(AI)技术飞速发展,尤其是在代码生成领域,涌现出许多强大的AI代码生成器。清华大学刘知远团队近期提出的“大模型密度定律”,为我们理解AI技术的发展速度提供了新的视角,也预示着AI代码生成技术的未来发展趋势。该定律指出,模型能力密度每3.3个月翻倍,这将如何改变我们对AI发展的认知,并对AI代码生成器产生怎样的影响呢?让我们深入探讨。大模型密度定律:能力密度与指数级增长“大模型密度
- 龙年公仔放送 | EdgeOne网站加速与防护训练营,鹅厂大牛带你实战无忧!
cdn
在数字化时代,网站的性能与安全性直接关系到用户体验和业务连续性,而当前许多网站面临着访问速度慢、加载时间长、易受DDoS攻击、CC攻击等安全威胁的困扰,而EdgeOne作为腾讯云下一代的CDN,集加速与安全防护于一身,已广泛应用于电商、金融、游戏等行业。如何应用EdgeOne,高效玩转网站加速与防护?腾讯云开发者社区携手EdgeOne团队精心打造《EdgeOne一站式玩转网站加速与防护实战营》,鹅
- 大模型密度定律:AI代码生成器将迎来爆发式增长?
前端
近年来,人工智能(AI)技术飞速发展,尤其是在代码生成领域,涌现出许多强大的AI代码生成器。清华大学刘知远团队近期提出的“大模型密度定律”,为我们理解AI技术的发展速度提供了新的视角,也预示着AI代码生成技术的未来发展趋势。该定律指出,模型能力密度每3.3个月翻倍,这将如何改变我们对AI发展的认知,并对AI代码生成器产生怎样的影响呢?让我们深入探讨。大模型密度定律:能力密度与指数级增长“大模型密度
- 缓存为什么比主存快?
Wx深入理解嵌入式
缓存缓存为什么比主存快?SRAM的原理DRAM的原理
缓存之所以比主存快,这是一个被广泛认知但未必深入理解的现象。让我们揭开这层神秘的面纱,探索缓存与主存速度差异的根本原因。目录1、多因素协同作用2、存储技术的较量SRAM的优势:DRAM的挑战:3、技术细节的深入5、总结1、多因素协同作用缓存与主存的速度差异,是由一系列相互交织的因素所决定的。这些因素包括存储器与处理器核心的距离、总线宽度、数据传输协议的复杂性,以及每种存储器的内在技术。2、存储技术
- 学习OpenEuler的经验分享
leegong23111
学习华为
学习OpenEuler的实用经验分享想要精通OpenEuler,扎实的基础是首要前提。建议从官方网站下载并研读技术文档,这些文档涵盖内核原理、系统架构和网络模型等关键知识,为后续学习筑牢根基。官方文档不仅全面,还紧密贴合最新版本特性,能让你紧跟技术前沿。比如,在理解OpenEuler内核调度机制时,官方文档详细阐述了任务分配和资源管理原则,让对系统底层运行逻辑有了清晰认知。同时,参考专业书籍也极为
- OpenEuler学习感悟
leegong23111
学习华为
在初次接触OpenEuler时,我深感其学习难度较大。它与我之前熟悉的操作系统存在诸多差异,学习过程中,需要理解复杂的内核机制、掌握独特的系统配置方法。但正是这种挑战,激发了我深入探索的热情。从理论学习入手,我发现官方文档是最宝贵的资源。其中详细阐述的内核原理、系统架构知识,为我构建了对OpenEuler的初步认知框架。然而,仅靠理论难以真正掌握这一系统。于是,我借助VirtualBox搭建了本地
- 论文阅读--Qwen2&2.5技术报告
__如果
论文阅读qwen
Qwen21引言所有模型都是在超过7trilliontoken(7万亿)的高质量、大规模数据集上预训练的2Tokenizer&Model2.1Tokenizer沿用Qwen(Bai等人,2023a)的做法,我们采用了基于字节级字节对编码的相同Tokenizer所有大小的模型都采用一个共有词汇表,包含151,643个常规词元和3个控制词元2.2模型架构基于Transformer架构的大型语言模型,具
- 学习历史智慧:刘邦识人用人
常耀斌
华为管理之道职场和发展
“五个一”:一双好眼睛:识人用人一对好耳朵:倾听接纳一个好头脑:善于分析一支好队伍:知人善任一副好心态:自我批判《当老板,学刘邦》读后感本文摘录:王立群:当老板,要学刘邦|刘邦|吕雉|张良|彭越|王立群|韩信|项羽_手机网易网1957年6月,毛泽东曾点评刘邦称:“汉高祖刘邦比西楚霸王项羽强,他得天下一因决策对头,二因用人得当。”在秦末大起义时期,天下的起义军数以万计,其中绝大多数都被灭掉了,最终的
- AIGC视频生成模型:Meta的Emu Video模型
好评笔记
#MetaAIGC-视频AIGC机器学习人工智能transformer论文阅读深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Meta的视频生成模型EmuVideo,作为Meta发布的第二款视频生成模型,在视频生成领域发挥关键作用。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言相关工作文本到图像(T2I)扩散模型视频生成/预测文本到视频(T2V)生成分解生成方法预备知识EmuVideo生成步骤图
- 智能合约:区块链世界的自动化契约
第十六年盛夏.
Solidity区块链搭建和维护智能合约区块链
引言在当今这个数字化飞速发展的时代,区块链技术已经成为了一个热门话题。提到区块链,很多人首先想到的是比特币,但其实区块链的应用远不止于此。智能合约作为区块链技术的重要组成部分,正在逐渐改变我们对合同、交易和数据管理的认知。本文将带你走进智能合约的世界,探索其独特之处以及它与以太坊、比特币和区块链之间的关系。详细内容可参照官方文档:solidity中文文档本文为自己梳理以及总结,旨在引领刚入行的小伙
- 比亚迪进军具身智能:未来实验室的战略布局与挑战
前端
比亚迪,这家以新能源汽车闻名全球的企业,正在悄然布局一个全新的领域——具身智能及机器人技术。近日,比亚迪成立未来实验室的消息引发广泛关注,其战略意义和未来发展前景值得我们深入探讨。在人工智能技术飞速发展的今天,选择合适的AI写代码工具对于项目的成功至关重要。比亚迪未来实验室的战略意义:汽车基因与智能融合比亚迪进军机器人领域并非偶然之举。其深厚的汽车制造经验和规模化生产能力,为其在机器人研发方面奠定
- 奇墨TBM技术业务管理系统:助力企业实现IT成本透明化
奇墨 ITQM
云计算
在数字化转型加速的当下,企业的IT投入不断增加。然而,随着IT环境日益复杂化,许多企业在管理IT成本时面临着IT支出不透明、资源分配效率低下、业务部门对IT部门的价值缺乏认知等挑战。这些挑战不仅阻碍了企业运营效率的提升,还可能导致资源浪费。在此背景下,奇墨科技发行首个TBM技术业务管理系统,上线TBM技术业务管理平台产品,解决数字化发展痛点、难点,帮助企业实现IT成本透明化,驱动高效的技术业务管理
- 网络安全态势感知技术综述
哥坐11路
网络
摘要:本文深入探讨网络安全态势感知技术,从其概念来源出发,详细阐述什么是网络安全态势感知,介绍态势感知的应用方向,并对华为的HiSecInsight与深信服的SIP两款典型产品进行剖析,旨在为相关领域人员提供全面且深入的技术认知。一、引言随着信息技术的飞速发展,网络安全问题日益复杂和严峻。网络安全态势感知作为应对这一挑战的关键技术,已成为保障网络空间安全的重要手段。二、网络安全态势感知的概念来源“
- 竞技体育数据可视化与可视化分析综述
*小白*
文献笔记大数据数据分析
Asurveyofcompetitivesportsdatavisualizationandvisualanalysis竞技体育数据可视化与可视化分析综述研究背景:1、竞技体育的发展导致竞技体育数据的大规模产生;2、针对竞技体育数据已有研究人员进行分析和软件开发;3、竞技体育数据的分析有助于专业分析,并可通过有效行为决策达到提高体育训练和比赛效果。研究目的:1、处理大规模竞技体育数据,认知运动员的
- AIGC视频生成国产之光:ByteDance的PixelDance模型
好评笔记
AIGC-视频补档AIGC计算机视觉人工智能深度学习机器学习论文阅读面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言输入训练和推理时的数据处理总结相关工作视频生成长视频生成方法模型架构
- 亮相AICon,火山引擎边缘云揭秘边缘AI Agent探索与实践
边缘计算智能硬件ai开发
12月13-14日,AICon全球人工智能开发与应用大会在北京成功举办。火山引擎边缘智能技术负责人谢皓受邀出席大会,以《AIAgent在边缘云的探索与实践》为主题,与全球AI领域的资深专家,共同深入探讨大模型落地、具身智能、多模态大模型、AIAgent等前沿技术如何推动行业变革、引领未来发展。火山引擎边缘智能技术负责人谢皓指出,随着AI时代的到来,边缘智能由传统的物联网、智慧物联,逐渐演变成智能体
- 论文阅读笔记:AI+RPA
几道之旅
人工智能
文章目录论文题目下载地址论文摘要论文题目Challengesandopportunities:ImplementingRPAandAIinfrauddetectioninthebankingsector下载地址点击这里下载论文摘要在银行业中,将机器人流程自动化(RPA)和人工智能(AI)集成用于欺诈检测是一项重大变革,既带来了挑战,也带来了机遇。随着金融机构面临日益复杂的欺诈企图,RPA和AI成为
- 使用 PyTorch 从头开始构建您自己的 Llama 3 架构
子然在打码
pytorchllama人工智能
https://www.aisolink.com/build-your-own-llama-3-architecture-from-scratch-using-pytorch全文摘要本文提供了一个详细的指南,介绍如何使用PyTorch从头开始构建Llama3模型的完整架构,并对自定义数据集进行训练和推理。文章涵盖了构建输入块、解码器块和输出块的步骤,并提供了相应的代码示例。最终目标是构建一个功能齐
- 什么是多模态机器学习:跨感知融合的智能前沿
非凡暖阳
人工智能神经网络
在人工智能的广阔天地里,多模态机器学习(MultimodalMachineLearning)作为一项前沿技术,正逐步解锁人机交互和信息理解的新境界。它超越了单一感官输入的限制,通过整合视觉、听觉、文本等多种数据类型,构建了一个更加丰富、立体的认知模型,为机器赋予了接近人类的综合感知与理解能力。本文将深入探讨多模态机器学习的定义、核心原理、关键技术、面临的挑战以及未来的应用前景,旨在为读者勾勒出这一
- Android BitmapShader实现狙击瞄具十字交叉线准星,Kotlin
zhangphil
Androidkotlinandroidkotlin
AndroidBitmapShader实现狙击瞄具十字交叉线准星,Kotlinimportandroid.content.Contextimportandroid.graphics.BitmapFactoryimportandroid.graphics.BitmapShaderimportandroid.graphics.Canvasimportandroid.graphics.Colorimpo
- 【MySQL】Mysql数据库导入导出sql文件、备份数据库、迁移数据库
程序员洲洲
数据库数据库mysql导入导出sqlsql文件备份迁移
本文摘要:本文提出了xxx的实用开发小技巧。作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主。同时欢迎大家关注其他专栏,我将分享Web前后端开发、人工智能、机器学习、深度学习从0到1系列文章。同时洲洲已经建立了程序员技术交流群,如果您感兴趣,可以私信我加入我的社群,也可以直接vx联系(文末有名片)v:bdizztt随时
- 【泡沫】追寻热爱:出书、写博客与自我突破的年度历程
泡沫o0
c++开发语言arm开发arm嵌入式博客之星qt
泡沫年度总结1.引言:写作者的自白1.1年度“主旋律”与写作初衷1.2年终回顾的意义2.成长蜕变:从追赶到沉淀2.1心态进化:从追赶到反思2.2技能与认知的双重提升3.创作之路:写作背后的故事3.1出版首本图书的幕后故事3.2300+篇博客的持续动力4.平衡艺术:在写作与生活之间4.1时间管理与精力分配的难题4.2焦虑与压力的自我调适5.远航计划:2025我们启程5.12025规划:在稳步中寻求突
- 新手对于中国工业互联网2.0架构的认知
2301_80509398
架构
目录2.0体系架构组成部分各部分细分:为了推动工业互联网的发展,各个国家的工业互联网联盟纷纷推出了自己的工业互联网参考架构模型,用以指导相关标准体系建设及产业推进。国外比较著名的有美国工业互联网参考架构IIRA德国工业互联网参考架构RAMI4.0中国工业互联网产业联盟在参考美国工业互联网参考架构IIRA、德国RAMI4.0、日本IVRA的基础上于2016年8月发布了《工业互联网体系架构1.0》。其
- 基于深度学习的认知架构的AI
SEU-WYL
深度学习dnn人工智能深度学习架构
基于深度学习的认知架构的AI是一类模仿人类认知过程的人工智能系统,旨在模拟人类感知、学习、推理、决策等复杂的认知功能。认知架构的目的是创建一个能够理解和处理复杂环境、实现自我学习和适应的AI系统。结合深度学习技术,这类AI可以更好地应对动态和复杂的任务需求。1.基于深度学习的认知架构的组成一个典型的基于深度学习的认知架构包含多个关键模块:感知模块:负责从外部环境中获取数据,处理和提取特征。深度学习
- Cognitive Architectures for Language Agents
UnknownBody
LLMAgent语言模型AI代理
本文是LLM系列文章,针对《CognitiveArchitecturesforLanguageAgents》的翻译。语言代理的认知架构摘要1引言2背景:从字符串到符号AGI3语言模型与生产系统之间的链接4语言代理的认知架构(CoALA):一个概念框架5用例6可操作的见解7讨论8结论摘要最近的努力已经将大型语言模型(LLM)与外部资源(例如,互联网)或内部控制流(例如,提示链接)结合起来,用于需要基
- 认知架构 cognitive architecture
谁怕平生太急
AgentLangChain
AssistantsAPI:以开发人员为中心。有状态的API:允许存储以前的消息、上传文件、访问内置工具(代码解释器)、通过函数调用控制其他工具。认知架构应用的两个组件:(1)如何提供上下文给应用(2)应用如何推理不同级别的认知架构:(1)单个LLM、仅得到输出(2)一连串LLM、仅得到输出(3)LLM作为路由、选择要使用的操作(工具、检索器、提示)(4)状态机、使用LLMs在步骤之间进行路由,某
- 洞悉人性的职场沟通技术
黎女士
企业培训在线学习职场沟通职场和发展
http://www.dianzikejian.com/content_2395.html背景:在企业管理的过程中为什么频频出现沟而不通,为什么每次沟通的事项不能有效的跟进和落实,为什么同事之间误会频频、协作不畅?……通过对企业大量的案例研究分析,我们发现很多时候是因为组织中每一位员工自身的沟通能力有待提升;同时当沟通出现问题,作为职场中每一位伙伴首先应该建立的认知是:沟通出现问题首先是我的问题。
- 职场真相:努力加班≠好绩效,你必须懂的职场规则!
人工智能
0你的问题,我知道!没有职场认知而产生的疑惑:遇到问题就死磕,觉得问人丢人,麻烦别人不好意思,结果问题没解决,自己先纠结半天;觉得工作特努力,常加班,但好绩效无缘面临裁员,愤怒为什么裁我,又因无规划,觉得惶恐这些问题是不是很眼熟?你或多或少也想过?其实,认识职场就是:认识职场的底层规律,即“游戏规则”底层规律之上,还要理解职场的事和人1职场的“游戏规则”1.0职场由来工业革命带来机器化大生产,带来
- 投具身智能大模型还是人形机器人本体,2025年资本如何抉择?
Robot251
机器人人工智能microsoft科技自动驾驶chatgpt
2025年已至,被誉为人形机器人商业化落地“元年”的2024年,实际商业化进展有所滞后;目前来看,头部人形机器人公司将2025年实现初步商业化,但仅仅指头部。2025年开年,国内具身智能赛道(人形机器人本体和具身智能大模型)迎来三笔融资,赛道仍旧火热,分别为:1月7日,人形机器人本体公司【傅利叶智能】完成近8亿元E轮融资;1月7日,具身智能机器人公司【智平方】完成数亿元Pre-A轮战略融资;1月9
- 2024,留给人形机器人的时间真不多了!
Robot251
机器人人工智能
2024年被国内一众科技媒体定义为人形机器人商业化元年。国外一众头部人形机器人企业在2024年一季度除了完成大额融资外,实现产品突破性进展,并与工业制造领域头部企业建立战略合作,瞬间引起一阵人形机器人赛道热潮,让诸多看客一度看到商业化希望;而擅长造势和吸引眼球的媒体,在此前提下,得出定论:2024年是人形机器人商业化元年。2024年具身智能领域的首个爆点是:1月4日,斯坦福大学发布开源机器人系统M
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs