博弈DP

目录

力扣 486. 预测赢家

力扣 877. 石子游戏

力扣 1140. 石子游戏 II

力扣 1406. 石子游戏 III

力扣 1510. 石子游戏 IV


力扣 486. 预测赢家

 给定一个表示分数的非负整数数组。 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,……。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。

给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。

示例 1:

输入: [1, 5, 2]
输出: False
解释: 一开始,玩家1可以从1和2中进行选择。
如果他选择2(或者1),那么玩家2可以从1(或者2)和5中进行选择。如果玩家2选择了5,那么玩家1则只剩下1(或者2)可选。
所以,玩家1的最终分数为 1 + 2 = 3,而玩家2为 5。
因此,玩家1永远不会成为赢家,返回 False。
示例 2:

输入: [1, 5, 233, 7]
输出: True
解释: 玩家1一开始选择1。然后玩家2必须从5和7中进行选择。无论玩家2选择了哪个,玩家1都可以选择233。
最终,玩家1(234分)比玩家2(12分)获得更多的分数,所以返回 True,表示玩家1可以成为赢家。
注意:

1 <= 给定的数组长度 <= 20.
数组里所有分数都为非负数且不会大于10000000。
如果最终两个玩家的分数相等,那么玩家1仍为赢家。

class Solution {
public:

    int res[20][20],flag[20][20];
 
    int PredictTheWinner2(vector& nums, int numsSize,int low,int high){
        if(low>high)return 0;
        if(flag[low][high])return res[low][high];
        flag[low][high]=1;
        return res[low][high]=max(nums[low]-PredictTheWinner2(nums,numsSize,low+1,high),nums[high]-PredictTheWinner2(nums,numsSize,low,high-1));
    }
    bool PredictTheWinner(vector& nums){
        memset(flag,0,sizeof(res));
        return PredictTheWinner2(nums,nums.size(),0,nums.size()-1)>=0;
    }
};

力扣 877. 石子游戏

题目:

亚历克斯和李用几堆石子在做游戏。偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] 。

游戏以谁手中的石子最多来决出胜负。石子的总数是奇数,所以没有平局。

亚历克斯和李轮流进行,亚历克斯先开始。 每回合,玩家从行的开始或结束处取走整堆石头。 这种情况一直持续到没有更多的石子堆为止,此时手中石子最多的玩家获胜。

假设亚历克斯和李都发挥出最佳水平,当亚历克斯赢得比赛时返回 true ,当李赢得比赛时返回 false 。

示例:

输入:[5,3,4,5]
输出:true
解释:
亚历克斯先开始,只能拿前 5 颗或后 5 颗石子 。
假设他取了前 5 颗,这一行就变成了 [3,4,5] 。
如果李拿走前 3 颗,那么剩下的是 [4,5],亚历克斯拿走后 5 颗赢得 10 分。
如果李拿走后 5 颗,那么剩下的是 [3,4],亚历克斯拿走后 4 颗赢得 9 分。
这表明,取前 5 颗石子对亚历克斯来说是一个胜利的举动,所以我们返回 true 。
 

提示:

2 <= piles.length <= 500
piles.length 是偶数。
1 <= piles[i] <= 500
sum(piles) 是奇数。

因为限制了数组长度是偶数,所以先手有不败策略。

bool stoneGame(int* piles, int pilesSize){
    return true;
}

力扣 1140. 石子游戏 II

爱丽丝和鲍勃继续他们的石子游戏。许多堆石子 排成一行,每堆都有正整数颗石子 piles[i]。游戏以谁手中的石子最多来决出胜负。

爱丽丝和鲍勃轮流进行,爱丽丝先开始。最初,M = 1

在每个玩家的回合中,该玩家可以拿走剩下的  X 堆的所有石子,其中 1 <= X <= 2M。然后,令 M = max(M, X)

游戏一直持续到所有石子都被拿走。

假设爱丽丝和鲍勃都发挥出最佳水平,返回爱丽丝可以得到的最大数量的石头。

示例 1:

输入:piles = [2,7,9,4,4]
输出:10
解释:如果一开始Alice取了一堆,Bob取了两堆,然后Alice再取两堆。爱丽丝可以得到2 + 4 + 4 = 10堆。如果Alice一开始拿走了两堆,那么Bob可以拿走剩下的三堆。在这种情况下,Alice得到2 + 7 = 9堆。返回10,因为它更大。

示例 2:

输入:piles = [1,2,3,4,5,100]
输出:104

提示:

  • 1 <= piles.length <= 100
  • 1 <= piles[i] <= 104
#define MAX_LENGTH 555

class Solution {
public:
	int maxScore(vector& piles, int i, int M) {
		if (ans.find(i*MAX_LENGTH + M) != ans.end())return ans[i*MAX_LENGTH + M];
		if (piles.size() <= i + M * 2) {
			return ans[i*MAX_LENGTH + M] = sp[piles.size() - 1] - sp[i - 1];
		}
		ans[i*MAX_LENGTH + M] = INT_MIN;
		for (int j = i + 1; j <= i + M * 2; j++) {
			ans[i*MAX_LENGTH + M] = max(ans[i*MAX_LENGTH + M],
				sp[j - 1] - sp[i - 1] - maxScore(piles, j, max(M, j - i)));
		}
		return ans[i*MAX_LENGTH + M];
	}
	int stoneGameII(vector& piles) {
		for (int i = 0; i < piles.size(); i++)sp[i] = sp[i - 1] + piles[i];
        ans.clear();
		auto s = maxScore(piles, 0, 1) + sp[piles.size() - 1];
		return s / 2;
	}
	mapsp;
    mapans;
};

力扣 1406. 石子游戏 III

Alice 和 Bob 继续他们的石子游戏。几堆石子 排成一行 ,每堆石子都对应一个得分,由数组 stoneValue 给出。

Alice 和 Bob 轮流取石子,Alice 总是先开始。在每个玩家的回合中,该玩家可以拿走剩下石子中的的前 1、2 或 3 堆石子 。比赛一直持续到所有石头都被拿走。

每个玩家的最终得分为他所拿到的每堆石子的对应得分之和。每个玩家的初始分数都是 0 。

比赛的目标是决出最高分,得分最高的选手将会赢得比赛,比赛也可能会出现平局。

假设 Alice 和 Bob 都采取 最优策略 。

如果 Alice 赢了就返回 "Alice" Bob 赢了就返回 "Bob"分数相同返回 "Tie" 。

示例 1:

输入:values = [1,2,3,7]
输出:"Bob"
解释:Alice 总是会输,她的最佳选择是拿走前三堆,得分变成 6 。但是 Bob 的得分为 7,Bob 获胜。

示例 2:

输入:values = [1,2,3,-9]
输出:"Alice"
解释:Alice 要想获胜就必须在第一个回合拿走前三堆石子,给 Bob 留下负分。
如果 Alice 只拿走第一堆,那么她的得分为 1,接下来 Bob 拿走第二、三堆,得分为 5 。之后 Alice 只能拿到分数 -9 的石子堆,输掉比赛。
如果 Alice 拿走前两堆,那么她的得分为 3,接下来 Bob 拿走第三堆,得分为 3 。之后 Alice 只能拿到分数 -9 的石子堆,同样会输掉比赛。
注意,他们都应该采取 最优策略 ,所以在这里 Alice 将选择能够使她获胜的方案。

示例 3:

输入:values = [1,2,3,6]
输出:"Tie"
解释:Alice 无法赢得比赛。如果她决定选择前三堆,她可以以平局结束比赛,否则她就会输。

提示:

  • 1 <= stoneValue.length <= 5 * 104
  • -1000 <= stoneValue[i] <= 1000
class Solution {
public:
	string stoneGameIII(vector& piles) {
		for (int i = 0; i < piles.size(); i++)sp[i] = sp[i - 1] + piles[i];
		ans.clear();
		for (int i = piles.size() - 1; i >= 0; i--) {
			auto t = INT_MIN;
			for (int j = i + 1; j <= i + 3 && j <= piles.size(); j++) {
				t = max(t, sp[j - 1] - ans[j]);
			}
			ans[i] = t - sp[i - 1];
		}
		auto s = ans[0];
		if (s)return s > 0 ? "Alice" : "Bob";
		return "Tie";
	}
	unordered_mapsp;
	unordered_mapans;
};

力扣 1510. 石子游戏 IV

Alice 和 Bob 两个人轮流玩一个游戏,Alice 先手。

一开始,有 n 个石子堆在一起。每个人轮流操作,正在操作的玩家可以从石子堆里拿走 任意 非零 平方数 个石子。

如果石子堆里没有石子了,则无法操作的玩家输掉游戏。

给你正整数 n ,且已知两个人都采取最优策略。如果 Alice 会赢得比赛,那么返回 True ,否则返回 False 。

示例 1:

输入:n = 1
输出:true
解释:Alice 拿走 1 个石子并赢得胜利,因为 Bob 无法进行任何操作。

示例 2:

输入:n = 2
输出:false
解释:Alice 只能拿走 1 个石子,然后 Bob 拿走最后一个石子并赢得胜利(2 -> 1 -> 0)。

示例 3:

输入:n = 4
输出:true
解释:n 已经是一个平方数,Alice 可以一次全拿掉 4 个石子并赢得胜利(4 -> 0)。

示例 4:

输入:n = 7
输出:false
解释:当 Bob 采取最优策略时,Alice 无法赢得比赛。
如果 Alice 一开始拿走 4 个石子, Bob 会拿走 1 个石子,然后 Alice 只能拿走 1 个石子,Bob 拿走最后一个石子并赢得胜利(7 -> 3 -> 2 -> 1 -> 0)。
如果 Alice 一开始拿走 1 个石子, Bob 会拿走 4 个石子,然后 Alice 只能拿走 1 个石子,Bob 拿走最后一个石子并赢得胜利(7 -> 6 -> 2 -> 1 -> 0)。

示例 5:

输入:n = 17
输出:false
解释:如果 Bob 采取最优策略,Alice 无法赢得胜利。

提示:

  • 1 <= n <= 10^5
class Solution {
public:
	bool winnerSquareGame(int n) {
		vectorv(n + 1, 0);
		for (int i = 0; i <= n; i++) {
			if (v[i] == 0) {
				for (int j = 1; j*j <= n - i; j++)v[j*j + i] = 1;
			}
		}
		return v[n];
	}
};

你可能感兴趣的:(算法)