OpenAI Gym中FrozenLake环境(场景)源码分析(7)

接前一篇文章:OpenAI Gym中FrozenLake环境(场景)源码分析(6)

上一篇文章对于例程代码中最后一个关键步骤:

new_state, reward, done, truncated, info = env.step(action)

进行了跟进调试。最终来到了gym/envs/toy_text/frozen_lake.py文件中的step函数。为了便于理解,再次贴出该函数源码: 

def step(self, a):
        transitions = self.P[self.s][a]
        i = categorical_sample([t[0] for t in transitions], self.np_random)
        p, s, r, t = transitions[i]
        self.s = s
        self.lastaction = a

        if self.render_mode == "human":
            self.render()
        return (int(s), r, t, False, {"prob": p})

本文对于该函数进行跟进调试及详细解析。

还是沿着之前的调试路径,继续单步跟进调试:

-> result = env.step(action)
(Pdb) s
--Call--
> /home/penghao/.local/lib/python3.11/site-packages/gym/envs/toy_text/frozen_lake.py(244)step()
-> def step(self, a):
(Pdb) n
> /home/penghao/.local/lib/python3.11/site-packages/gym/envs/toy_text/frozen_lake.py(245)step()
-> transitions = self.P[self.s][a]
(Pdb) 

通过打印看一下self.s、a和self.p分别是什么值:

> /home/penghao/.local/lib/python3.11/site-packages/gym/envs/toy_text/frozen_lake.py(245)step()
-> transitions = self.P[self.s][a]
(Pdb) p self.s
0
(Pdb) p a
1
(Pdb) p self.P
{0: {0: [(0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 4, 0.0, False)], 1: [(0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 4, 0.0, False), (0.3333333333333333, 1, 0.0, False)], 2: [(0.3333333333333333, 4, 0.0, False), (0.3333333333333333, 1, 0.0, False), (0.3333333333333333, 0, 0.0, False)], 3: [(0.3333333333333333, 1, 0.0, False), (0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 0, 0.0, False)]}, 1: {0: [(0.3333333333333333, 1, 0.0, False), (0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 5, 0.0, True)], 1: [(0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 2, 0.0, False)], 2: [(0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 1, 0.0, False)], 3: [(0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 1, 0.0, False), (0.3333333333333333, 0, 0.0, False)]}, 2: {0: [(0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 1, 0.0, False), (0.3333333333333333, 6, 0.0, False)], 1: [(0.3333333333333333, 1, 0.0, False), (0.3333333333333333, 6, 0.0, False), (0.3333333333333333, 3, 0.0, False)], 2: [(0.3333333333333333, 6, 0.0, False), (0.3333333333333333, 3, 0.0, False), (0.3333333333333333, 2, 0.0, False)], 3: [(0.3333333333333333, 3, 0.0, False), (0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 1, 0.0, False)]}, 3: {0: [(0.3333333333333333, 3, 0.0, False), (0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 7, 0.0, True)], 1: [(0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 7, 0.0, True), (0.3333333333333333, 3, 0.0, False)], 2: [(0.3333333333333333, 7, 0.0, True), (0.3333333333333333, 3, 0.0, False), (0.3333333333333333, 3, 0.0, False)], 3: [(0.3333333333333333, 3, 0.0, False), (0.3333333333333333, 3, 0.0, False), (0.3333333333333333, 2, 0.0, False)]}, 4: {0: [(0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 4, 0.0, False), (0.3333333333333333, 8, 0.0, False)], 1: [(0.3333333333333333, 4, 0.0, False), (0.3333333333333333, 8, 0.0, False), (0.3333333333333333, 5, 0.0, True)], 2: [(0.3333333333333333, 8, 0.0, False), (0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 0, 0.0, False)], 3: [(0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 4, 0.0, False)]}, 5: {0: [(1.0, 5, 0, True)], 1: [(1.0, 5, 0, True)], 2: [(1.0, 5, 0, True)], 3: [(1.0, 5, 0, True)]}, 6: {0: [(0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 10, 0.0, False)], 1: [(0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 10, 0.0, False), (0.3333333333333333, 7, 0.0, True)], 2: [(0.3333333333333333, 10, 0.0, False), (0.3333333333333333, 7, 0.0, True), (0.3333333333333333, 2, 0.0, False)], 3: [(0.3333333333333333, 7, 0.0, True), (0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 5, 0.0, True)]}, 7: {0: [(1.0, 7, 0, True)], 1: [(1.0, 7, 0, True)], 2: [(1.0, 7, 0, True)], 3: [(1.0, 7, 0, True)]}, 8: {0: [(0.3333333333333333, 4, 0.0, False), (0.3333333333333333, 8, 0.0, False), (0.3333333333333333, 12, 0.0, True)], 1: [(0.3333333333333333, 8, 0.0, False), (0.3333333333333333, 12, 0.0, True), (0.3333333333333333, 9, 0.0, False)], 2: [(0.3333333333333333, 12, 0.0, True), (0.3333333333333333, 9, 0.0, False), (0.3333333333333333, 4, 0.0, False)], 3: [(0.3333333333333333, 9, 0.0, False), (0.3333333333333333, 4, 0.0, False), (0.3333333333333333, 8, 0.0, False)]}, 9: {0: [(0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 8, 0.0, False), (0.3333333333333333, 13, 0.0, False)], 1: [(0.3333333333333333, 8, 0.0, False), (0.3333333333333333, 13, 0.0, False), (0.3333333333333333, 10, 0.0, False)], 2: [(0.3333333333333333, 13, 0.0, False), (0.3333333333333333, 10, 0.0, False), (0.3333333333333333, 5, 0.0, True)], 3: [(0.3333333333333333, 10, 0.0, False), (0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 8, 0.0, False)]}, 10: {0: [(0.3333333333333333, 6, 0.0, False), (0.3333333333333333, 9, 0.0, False), (0.3333333333333333, 14, 0.0, False)], 1: [(0.3333333333333333, 9, 0.0, False), (0.3333333333333333, 14, 0.0, False), (0.3333333333333333, 11, 0.0, True)], 2: [(0.3333333333333333, 14, 0.0, False), (0.3333333333333333, 11, 0.0, True), (0.3333333333333333, 6, 0.0, False)], 3: [(0.3333333333333333, 11, 0.0, True), (0.3333333333333333, 6, 0.0, False), (0.3333333333333333, 9, 0.0, False)]}, 11: {0: [(1.0, 11, 0, True)], 1: [(1.0, 11, 0, True)], 2: [(1.0, 11, 0, True)], 3: [(1.0, 11, 0, True)]}, 12: {0: [(1.0, 12, 0, True)], 1: [(1.0, 12, 0, True)], 2: [(1.0, 12, 0, True)], 3: [(1.0, 12, 0, True)]}, 13: {0: [(0.3333333333333333, 9, 0.0, False), (0.3333333333333333, 12, 0.0, True), (0.3333333333333333, 13, 0.0, False)], 1: [(0.3333333333333333, 12, 0.0, True), (0.3333333333333333, 13, 0.0, False), (0.3333333333333333, 14, 0.0, False)], 2: [(0.3333333333333333, 13, 0.0, False), (0.3333333333333333, 14, 0.0, False), (0.3333333333333333, 9, 0.0, False)], 3: [(0.3333333333333333, 14, 0.0, False), (0.3333333333333333, 9, 0.0, False), (0.3333333333333333, 12, 0.0, True)]}, 14: {0: [(0.3333333333333333, 10, 0.0, False), (0.3333333333333333, 13, 0.0, False), (0.3333333333333333, 14, 0.0, False)], 1: [(0.3333333333333333, 13, 0.0, False), (0.3333333333333333, 14, 0.0, False), (0.3333333333333333, 15, 1.0, True)], 2: [(0.3333333333333333, 14, 0.0, False), (0.3333333333333333, 15, 1.0, True), (0.3333333333333333, 10, 0.0, False)], 3: [(0.3333333333333333, 15, 1.0, True), (0.3333333333333333, 10, 0.0, False), (0.3333333333333333, 13, 0.0, False)]}, 15: {0: [(1.0, 15, 0, True)], 1: [(1.0, 15, 0, True)], 2: [(1.0, 15, 0, True)], 3: [(1.0, 15, 0, True)]}}
(Pdb) 

这里重点讲一下self.P。self.p是在frozen_lake.py的class FrozenLakeEnv(Env)的构造函数中定义的,代码如下:

def __init__(
        self,
        render_mode: Optional[str] = None,
        desc=None,
        map_name="4x4",
        is_slippery=True,
    ):
        if desc is None and map_name is None:
            desc = generate_random_map()
        elif desc is None:
            desc = MAPS[map_name]
        self.desc = desc = np.asarray(desc, dtype="c")
        self.nrow, self.ncol = nrow, ncol = desc.shape
        self.reward_range = (0, 1)

        nA = 4
        nS = nrow * ncol

        self.initial_state_distrib = np.array(desc == b"S").astype("float64").ravel()
        self.initial_state_distrib /= self.initial_state_distrib.sum()

        self.P = {s: {a: [] for a in range(nA)} for s in range(nS)}

……

其中nA = 4,代表上下左右四种动作;nS = nrow * ncol代表状态,即整个空间(二维的)。

这里的nrow * ncol为4 * 4,因此self.P的实际值如上所示:

 self.P = {s: {a: [] for a in range(nA)} for s in range(nS)
p self.P
{0: {0: [(0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 4, 0.0, False)], 1: [(0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 4, 0.0, False), (0.3333333333333333, 1, 0.0, False)], 2: [(0.3333333333333333, 4, 0.0, False), (0.3333333333333333, 1, 0.0, False), (0.3333333333333333, 0, 0.0, False)], 3: [(0.3333333333333333, 1, 0.0, False), (0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 0, 0.0, False)]}, 1: {0: [(0.3333333333333333, 1, 0.0, False), (0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 5, 0.0, True)], 1: [(0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 2, 0.0, False)], 2: [(0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 1, 0.0, False)], 3: [(0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 1, 0.0, False), (0.3333333333333333, 0, 0.0, False)]}, 2: {0: [(0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 1, 0.0, False), (0.3333333333333333, 6, 0.0, False)], 1: [(0.3333333333333333, 1, 0.0, False), (0.3333333333333333, 6, 0.0, False), (0.3333333333333333, 3, 0.0, False)], 2: [(0.3333333333333333, 6, 0.0, False), (0.3333333333333333, 3, 0.0, False), (0.3333333333333333, 2, 0.0, False)], 3: [(0.3333333333333333, 3, 0.0, False), (0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 1, 0.0, False)]}, 3: {0: [(0.3333333333333333, 3, 0.0, False), (0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 7, 0.0, True)], 1: [(0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 7, 0.0, True), (0.3333333333333333, 3, 0.0, False)], 2: [(0.3333333333333333, 7, 0.0, True), (0.3333333333333333, 3, 0.0, False), (0.3333333333333333, 3, 0.0, False)], 3: [(0.3333333333333333, 3, 0.0, False), (0.3333333333333333, 3, 0.0, False), (0.3333333333333333, 2, 0.0, False)]}, 4: {0: [(0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 4, 0.0, False), (0.3333333333333333, 8, 0.0, False)], 1: [(0.3333333333333333, 4, 0.0, False), (0.3333333333333333, 8, 0.0, False), (0.3333333333333333, 5, 0.0, True)], 2: [(0.3333333333333333, 8, 0.0, False), (0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 0, 0.0, False)], 3: [(0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 0, 0.0, False), (0.3333333333333333, 4, 0.0, False)]}, 5: {0: [(1.0, 5, 0, True)], 1: [(1.0, 5, 0, True)], 2: [(1.0, 5, 0, True)], 3: [(1.0, 5, 0, True)]}, 6: {0: [(0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 10, 0.0, False)], 1: [(0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 10, 0.0, False), (0.3333333333333333, 7, 0.0, True)], 2: [(0.3333333333333333, 10, 0.0, False), (0.3333333333333333, 7, 0.0, True), (0.3333333333333333, 2, 0.0, False)], 3: [(0.3333333333333333, 7, 0.0, True), (0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 5, 0.0, True)]}, 7: {0: [(1.0, 7, 0, True)], 1: [(1.0, 7, 0, True)], 2: [(1.0, 7, 0, True)], 3: [(1.0, 7, 0, True)]}, 8: {0: [(0.3333333333333333, 4, 0.0, False), (0.3333333333333333, 8, 0.0, False), (0.3333333333333333, 12, 0.0, True)], 1: [(0.3333333333333333, 8, 0.0, False), (0.3333333333333333, 12, 0.0, True), (0.3333333333333333, 9, 0.0, False)], 2: [(0.3333333333333333, 12, 0.0, True), (0.3333333333333333, 9, 0.0, False), (0.3333333333333333, 4, 0.0, False)], 3: [(0.3333333333333333, 9, 0.0, False), (0.3333333333333333, 4, 0.0, False), (0.3333333333333333, 8, 0.0, False)]}, 9: {0: [(0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 8, 0.0, False), (0.3333333333333333, 13, 0.0, False)], 1: [(0.3333333333333333, 8, 0.0, False), (0.3333333333333333, 13, 0.0, False), (0.3333333333333333, 10, 0.0, False)], 2: [(0.3333333333333333, 13, 0.0, False), (0.3333333333333333, 10, 0.0, False), (0.3333333333333333, 5, 0.0, True)], 3: [(0.3333333333333333, 10, 0.0, False), (0.3333333333333333, 5, 0.0, True), (0.3333333333333333, 8, 0.0, False)]}, 10: {0: [(0.3333333333333333, 6, 0.0, False), (0.3333333333333333, 9, 0.0, False), (0.3333333333333333, 14, 0.0, False)], 1: [(0.3333333333333333, 9, 0.0, False), (0.3333333333333333, 14, 0.0, False), (0.3333333333333333, 11, 0.0, True)], 2: [(0.3333333333333333, 14, 0.0, False), (0.3333333333333333, 11, 0.0, True), (0.3333333333333333, 6, 0.0, False)], 3: [(0.3333333333333333, 11, 0.0, True), (0.3333333333333333, 6, 0.0, False), (0.3333333333333333, 9, 0.0, False)]}, 11: {0: [(1.0, 11, 0, True)], 1: [(1.0, 11, 0, True)], 2: [(1.0, 11, 0, True)], 3: [(1.0, 11, 0, True)]}, 12: {0: [(1.0, 12, 0, True)], 1: [(1.0, 12, 0, True)], 2: [(1.0, 12, 0, True)], 3: [(1.0, 12, 0, True)]}, 13: {0: [(0.3333333333333333, 9, 0.0, False), (0.3333333333333333, 12, 0.0, True), (0.3333333333333333, 13, 0.0, False)], 1: [(0.3333333333333333, 12, 0.0, True), (0.3333333333333333, 13, 0.0, False), (0.3333333333333333, 14, 0.0, False)], 2: [(0.3333333333333333, 13, 0.0, False), (0.3333333333333333, 14, 0.0, False), (0.3333333333333333, 9, 0.0, False)], 3: [(0.3333333333333333, 14, 0.0, False), (0.3333333333333333, 9, 0.0, False), (0.3333333333333333, 12, 0.0, True)]}, 14: {0: [(0.3333333333333333, 10, 0.0, False), (0.3333333333333333, 13, 0.0, False), (0.3333333333333333, 14, 0.0, False)], 1: [(0.3333333333333333, 13, 0.0, False), (0.3333333333333333, 14, 0.0, False), (0.3333333333333333, 15, 1.0, True)], 2: [(0.3333333333333333, 14, 0.0, False), (0.3333333333333333, 15, 1.0, True), (0.3333333333333333, 10, 0.0, False)], 3: [(0.3333333333333333, 15, 1.0, True), (0.3333333333333333, 10, 0.0, False), (0.3333333333333333, 13, 0.0, False)]}, 15: {0: [(1.0, 15, 0, True)], 1: [(1.0, 15, 0, True)], 2: [(1.0, 15, 0, True)], 3: [(1.0, 15, 0, True)]}}
(Pdb) 

其中每一项的值分别代表了后边的p, s, r, t = transitions[i]中的p、s、r、t。

再往下单步跟进似乎并不容易了,直接对源码进行分析。

categorical_sample函数在gym/envs/toy_text/utils.py中,(由于此文件很简单,因此全部)代码如下:

import numpy as np


def categorical_sample(prob_n, np_random: np.random.Generator):
    """Sample from categorical distribution where each row specifies class probabilities."""
    prob_n = np.asarray(prob_n)
    csprob_n = np.cumsum(prob_n)
    return np.argmax(csprob_n > np_random.random())

你可能感兴趣的:(强化学习,OpenAI,Gym,OpenAI,Gym,强化学习,Q-learning)