从斐波那契到尾递归

首先,什么是尾递归?

尾部递归是一种编程技巧。递归函数是指一些会在函数内调用自己的函数,如果在递归函数中,递归调用返回的结果总被直接返回,则称为尾部递归。
尾部递归的函数有助于将算法转化成函数编程语言,而且从编译器角度来说,亦容易优化成为普通循环。这是因为从计算机的基本面来说,所有的循环都是利用重复移跳到代码的开头来实现的。如果有尾部归递,就只需要叠套一个堆栈,因为电脑只需要将函数的参数改变再重新调用一次。利用尾部递归最主要的目的是要优化,例如在Scheme语言中,明确规定必须针对尾部递归作优化。可见尾部递归的作用,是非常依赖于具体实现的。

我们还是从简单的斐波那契开始了解尾递归。

用普通的递归计算Fibonacci数列:

#include "stdio.h"
#include "math.h"

int factorial(int n);

int main(void)
{
    int i, n, rs;

    printf("请输入斐波那契数n:");
    scanf("%d",&n);

    rs = factorial(n);
    printf("%d \n", rs);

    return 0;
}

// 递归
int factorial(int n)
{
    if(n <= 2)
    {
        return 1;
    }
    else
    {
        return factorial(n-1) + factorial(n-2);
    }
}

程序员运行结果如下:

请输入斐波那契数n:20
6765

Process returned 0 (0x0)   execution time : 3.502 s
Press any key to continue.

下面我们看看如何用尾递归实现斐波那契数。

#include "stdio.h"
#include "math.h"

int factorial(int n);

int main(void)
{
    int i, n, rs;

    printf("请输入斐波那契数n:");
    scanf("%d",&n);

    rs = factorial_tail(n, 1, 1);
    printf("%d ", rs);

    return 0;
}

int factorial_tail(int n,int acc1,int acc2)
{
    if (n < 2)
    {
        return acc1;
    }
    else
    {
        return factorial_tail(n-1,acc2,acc1+acc2);
    }
}

程序员运行结果如下:

请输入斐波那契数n:20
6765
Process returned 0 (0x0)   execution time : 1.460 s
Press any key to continue.

可以发现,快了一倍多。

从上面的调试就可以很清晰地看出尾递归的计算过程了。acc1就是第n个数,而acc2就是第n与第n+1个数的和,计算结果参与到下一次的计算,从而减少很多重复计算量。

fibonacci(n-1,acc2,acc1+acc2)真是神来之笔,原本朴素的递归产生的栈的层次像二叉树一样,以指数级增长,但是现在栈的层次却像是数组,变成线性增长了,实在是奇妙,总结起来也很简单,原本栈是先扩展开,然后边收拢边计算结果,现在却变成在调用自身的同时通过参数来计算。

小结:

尾递归的本质是:将单次计算的结果缓存起来,传递给下次调用,相当于自动累积。

在Java等命令式语言中,尾递归使用非常少见,因为我们可以直接用循环解决。而在函数式语言中,尾递归却是一种神器,要实现循环就靠它了。

很多人可能会有疑问,为什么尾递归也是递归,却不会造成栈溢出呢?因为编译器通常都会对尾递归进行优化。编译器会发现根本没有必要存储栈信息了,因而会在函数尾直接清空相关的栈。

你可能感兴趣的:(c语言,数据结构,递归调用)