python中的Mann-Kendall单调趋势检验--及原理说明_liucheng_zimozigreat的博客-CSDN博客_mann-kendall python
前提假设:
mann-kendall趋势检验(有时称为mk检验)用于分析时间序列数据的一致性增加或减少趋势(单调趋势)。这是一个非参数检验,这意味着它适用于所有分布(即数据不必满足正态性假设),但数据应该没有序列相关性。如果数据具有序列相关性,则可能在显著水平上影响(p值)。这可能会导致误解。为了克服这一问题,研究者提出了几种修正的mann-kendall检验(hamed和rao修正的mk检验、yue和wang修正的mk检验、预白化法修正的mk检验等)。季节性mann-kendall检验也被用来消除季节性的影响。
mann-kendall检验是一种强大的趋势检验,因此针对空间条件,发展了多元mk检验、区域mk检验、相关mk检验、部分mk检验等修正的mann-kendall检验。pymannkendal
是非参数mann-kendall趋势分析的纯python实现,它集合了几乎所有类型的mann-kendall测试。目前,该软件包有11个mann-kendall检验和2个sen斜率估计函数。功能简介如下:
原始mann-kendall检验(原始_检验):原始mann-kendall检验是非参数检验,不考虑序列相关性或季节性影响。
hamed和rao修正的mk检验(hamed和rao修正的mk检验):这个修正的mk检验由hamed和rao(1998)提出的解决序列自相关问题的方法。他们建议采用方差校正方法来改进趋势分析。用户可以通过在该函数中插入滞后数来考虑前n个显著滞后。默认情况下,它会考虑所有重要的延迟。
Yue和Wang修正的MK检验(Yue-Wang_修正的检验):这也是Yue,S.,&Wang,C.Y.(2004)提出的考虑序列自相关的方差修正方法。用户还可以为计算设置所需的有效n滞后。
使用预白化方法的修正mk检验(预白化方法的修正):Yue和Wang(2002)建议在应用趋势检验之前使用预白化时间序列的检验。
使用无趋势预白化方法的修正mk试验(无趋势预白化试验):Yue和Wang(2002)也提出了在应用趋势试验之前去除趋势成分,然后对时间序列进行预白化的试验。
多变量mk检验(多变量检验):这是hirsch(1982)提出的多参数mk检验。他用这种方法进行季节性mk检验,把每个月作为一个参数。
季节性MK检验(季节性检验):对于季节性时间序列数据,Hirsch,R.M.,Slack,J.R.和Smith,R.A.(1982)提出了这个检验来计算季节性趋势。
区域mk检验(regional mk test):基于Hirsch(1982)提出的季节性mk检验,Helsel,D.R.和Frans,L.M.,(2006)建议采用区域mk检验来计算区域尺度的总体趋势。
相关多变量mk检验(相关多变量检验):hipel(1994)提出的参数相关的多变量mk检验。
相关季节性MK检验(相关季节性检验):当时间序列与前一个或多个月/季节显著相关时,使用Hipel(1994)提出的方法。
部分mk检验(部分_检验):在实际事件中,许多因素都会影响研究的主要响应参数,从而使趋势结果产生偏差。为了克服这个问题,libiseller(2002)提出了部分mk检验。它需要两个参数作为输入,一个是响应参数,另一个是独立参数。
泰尔-森斜率估计器(sen s-slope):泰尔(1950)和森(1968)提出的估计单调趋势幅度的方法。
季节sen斜率估计量(季节sen斜率):hipel(1994)提出的当数据具有季节性影响时估计单调趋势大小的方法。
所有mann-kendall检验函数的输入参数几乎相同。这些是:
所有mann-kendall测试都返回一个命名元组,其中包含:
sen的斜率函数需要数据向量。季节性sen的斜率也有可选的输入周期,默认值为12。两个sen的slope函数都只返回slope值。
Python pymannkendall包_程序模块 - PyPI - Python中文网
"""
Created on 05 March 2018
Update on 26 July 2019
@author: Md. Manjurul Hussain Shourov
version: 1.1
Approach: Vectorisation
Citation: Hussain et al., (2019). pyMannKendall: a python package for non parametric Mann Kendall family of trend tests.. Journal of Open Source Software, 4(39), 1556, https://doi.org/10.21105/joss.01556
"""
from __future__ import division
import numpy as np
from scipy.stats import norm, rankdata
from collections import namedtuple
# Supporting Functions
# Data Preprocessing
def __preprocessing(x):
x = np.asarray(x)
dim = x.ndim
if dim == 1:
c = 1
elif dim == 2:
(n, c) = x.shape
if c == 1:
dim = 1
x = x.flatten()
else:
print('Please check your dataset.')
return x, c
# Missing Values Analysis
def __missing_values_analysis(x, method = 'skip'):
if method.lower() == 'skip':
if x.ndim == 1:
x = x[~np.isnan(x)]
else:
x = x[~np.isnan(x).any(axis=1)]
n = len(x)
return x, n
# ACF Calculation
def __acf(x, nlags):
y = x - x.mean()
n = len(x)
d = n * np.ones(2 * n - 1)
acov = (np.correlate(y, y, 'full') / d)[n - 1:]
return acov[:nlags+1]/acov[0]
# vectorization approach to calculate mk score, S
def __mk_score(x, n):
s = 0
demo = np.ones(n)
for k in range(n-1):
s = s + np.sum(demo[k+1:n][x[k+1:n] > x[k]]) - np.sum(demo[k+1:n][x[k+1:n] < x[k]])
return s
# original Mann-Kendal's variance S calculation
def __variance_s(x, n):
# calculate the unique data
unique_x = np.unique(x)
g = len(unique_x)
# calculate the var(s)
if n == g: # there is no tie
var_s = (n*(n-1)*(2*n+5))/18
else: # there are some ties in data
tp = np.zeros(unique_x.shape)
demo = np.ones(n)
for i in range(g):
tp[i] = np.sum(demo[x == unique_x[i]])
var_s = (n*(n-1)*(2*n+5) - np.sum(tp*(tp-1)*(2*tp+5)))/18
return var_s
# standardized test statistic Z
def __z_score(s, var_s):
if s > 0:
z = (s - 1)/np.sqrt(var_s)
elif s == 0:
z = 0
elif s < 0:
z = (s + 1)/np.sqrt(var_s)
return z
# calculate the p_value
def __p_value(z, alpha):
# two tail test
p = 2*(1-norm.cdf(abs(z)))
h = abs(z) > norm.ppf(1-alpha/2)
if (z < 0) and h:
trend = 'decreasing'
elif (z > 0) and h:
trend = 'increasing'
else:
trend = 'no trend'
return p, h, trend
def __R(x):
n = len(x)
R = []
for j in range(n):
i = np.arange(n)
s = np.sum(np.sign(x[j] - x[i]))
R.extend([(n + 1 + s)/2])
return np.asarray(R)
def __K(x,z):
n = len(x)
K = 0
for i in range(n-1):
j = np.arange(i,n)
K = K + np.sum(np.sign((x[j] - x[i]) * (z[j] - z[i])))
return K
# Original Sens Estimator
def __sens_estimator(x):
idx = 0
n = len(x)
d = np.ones(int(n*(n-1)/2))
for i in range(n-1):
j = np.arange(i+1,n)
d[idx : idx + len(j)] = (x[j] - x[i]) / (j - i)
idx = idx + len(j)
return d
def sens_slope(x):
"""
This method proposed by Theil (1950) and Sen (1968) to estimate the magnitude of the monotonic trend.
Input:
x: a one dimensional vector (list, numpy array or pandas series) data
Output:
slope: sen's slope
Examples
--------
>>> x = np.random.rand(120)
>>> slope = sens_slope(x)
"""
x, c = __preprocessing(x)
x, n = __missing_values_analysis(x, method = 'skip')
return np.median(__sens_estimator(x))
def seasonal_sens_slope(x, period=12):
"""
This method proposed by Hipel (1994) to estimate the magnitude of the monotonic trend, when data has seasonal effects.
Input:
x: a vector (list, numpy array or pandas series) data
period: seasonal cycle. For monthly data it is 12, weekly data it is 52 (12 is the default)
Output:
slope: sen's slope
Examples
--------
>>> x = np.random.rand(120)
>>> slope = seasonal_sens_slope(x, 12)
"""
x, c = __preprocessing(x)
n = len(x)
if x.ndim == 1:
if np.mod(n,period) != 0:
x = np.pad(x,(0,period - np.mod(n,period)), 'constant', constant_values=(np.nan,))
x = x.reshape(int(len(x)/period),period)
x, n = __missing_values_analysis(x, method = 'skip')
d = []
for i in range(period):
d.extend(__sens_estimator(x[:,i]))
return np.median(np.asarray(d))
def original_test(x, alpha = 0.05):
"""
This function checks the Mann-Kendall (MK) test (Mann 1945, Kendall 1975, Gilbert 1987).
Input:
x: a vector (list, numpy array or pandas series) data
alpha: significance level (0.05 default)
Output:
trend: tells the trend (increasing, decreasing or no trend)
h: True (if trend is present) or False (if trend is absence)
p: p-value of the significance test
z: normalized test statistics
Tau: Kendall Tau
s: Mann-Kendal's score
var_s: Variance S
slope: sen's slope
Examples
--------
>>> import pymannkendall as mk
>>> x = np.random.rand(1000)
>>> trend,h,p,z,tau,s,var_s,slope = mk.original_test(x,0.05)
"""
res = namedtuple('Mann_Kendall_Test', ['trend', 'h', 'p', 'z', 'Tau', 's', 'var_s', 'slope'])
x, c = __preprocessing(x)
x, n = __missing_values_analysis(x, method = 'skip')
s = __mk_score(x, n)
var_s = __variance_s(x, n)
Tau = s/(.5*n*(n-1))
z = __z_score(s, var_s)
p, h, trend = __p_value(z, alpha)
slope = sens_slope(x)
return res(trend, h, p, z, Tau, s, var_s, slope)
def hamed_rao_modification_test(x, alpha = 0.05, lag=None):
"""
This function checks the Modified Mann-Kendall (MK) test using Hamed and Rao (1998) method.
Input:
x: a vector (list, numpy array or pandas series) data
alpha: significance level (0.05 default)
lag: No. of First Significant Lags (default None, You can use 3 for considering first 3 lags, which also proposed by Hamed and Rao(1998))
Output:
trend: tells the trend (increasing, decreasing or no trend)
h: True (if trend is present) or False (if trend is absence)
p: p-value of the significance test
z: normalized test statistics
Tau: Kendall Tau
s: Mann-Kendal's score
var_s: Variance S
slope: sen's slope
Examples
--------
>>> import pymannkendall as mk
>>> x = np.random.rand(1000)
>>> trend,h,p,z,tau,s,var_s,slope = mk.hamed_rao_modification_test(x,0.05)
"""
res = namedtuple('Modified_Mann_Kendall_Test_Hamed_Rao_Approach', ['trend', 'h', 'p', 'z', 'Tau', 's', 'var_s', 'slope'])
x, c = __preprocessing(x)
x, n = __missing_values_analysis(x, method = 'skip')
s = __mk_score(x, n)
var_s = __variance_s(x, n)
Tau = s/(.5*n*(n-1))
# Hamed and Rao (1998) variance correction
if lag is None:
lag = n
else:
lag = lag + 1
# detrending
# x_detrend = x - np.multiply(range(1,n+1), np.median(x))
slope = sens_slope(x)
x_detrend = x - np.arange(1,n+1) * slope
I = rankdata(x_detrend)
# account for autocorrelation
acf_1 = __acf(I, nlags=lag-1)
interval = norm.ppf(1 - alpha / 2) / np.sqrt(n)
upper_bound = 0 + interval
lower_bound = 0 - interval
sni = 0
for i in range(1,lag):
if (acf_1[i] <= upper_bound and acf_1[i] >= lower_bound):
sni = sni
else:
sni += (n-i) * (n-i-1) * (n-i-2) * acf_1[i]
n_ns = 1 + (2 / (n * (n-1) * (n-2))) * sni
var_s = var_s * n_ns
z = __z_score(s, var_s)
p, h, trend = __p_value(z, alpha)
return res(trend, h, p, z, Tau, s, var_s, slope)
def yue_wang_modification_test(x, alpha = 0.05, lag=None):
"""
Input: This function checks the Modified Mann-Kendall (MK) test using Yue and Wang (2004) method.
x: a vector (list, numpy array or pandas series) data
alpha: significance level (0.05 default)
lag: No. of First Significant Lags (default None, You can use 1 for considering first 1 lags, which also proposed by Yue and Wang (2004))
Output:
trend: tells the trend (increasing, decreasing or no trend)
h: True (if trend is present) or False (if trend is absence)
p: p-value of the significance test
z: normalized test statistics
Tau: Kendall Tau
s: Mann-Kendal's score
var_s: Variance S
slope: sen's slope
Examples
--------
>>> import pymannkendall as mk
>>> x = np.random.rand(1000)
>>> trend,h,p,z,tau,s,var_s,slope = mk.yue_wang_modification_test(x,0.05)
"""
res = namedtuple('Modified_Mann_Kendall_Test_Yue_Wang_Approach', ['trend', 'h', 'p', 'z', 'Tau', 's', 'var_s', 'slope'])
x, c = __preprocessing(x)
x, n = __missing_values_analysis(x, method = 'skip')
s = __mk_score(x, n)
var_s = __variance_s(x, n)
Tau = s/(.5*n*(n-1))
# Yue and Wang (2004) variance correction
if lag is None:
lag = n
else:
lag = lag + 1
# detrending
slope = sens_slope(x)
x_detrend = x - np.arange(1,n+1) * slope
# account for autocorrelation
acf_1 = __acf(x_detrend, nlags=lag-1)
idx = np.arange(1,lag)
sni = np.sum((1 - idx/n) * acf_1[idx])
n_ns = 1 + 2 * sni
var_s = var_s * n_ns
z = __z_score(s, var_s)
p, h, trend = __p_value(z, alpha)
return res(trend, h, p, z, Tau, s, var_s, slope)
def pre_whitening_modification_test(x, alpha = 0.05):
"""
This function checks the Modified Mann-Kendall (MK) test using Pre-Whitening method proposed by Yue and Wang (2002).
Input:
x: a vector (list, numpy array or pandas series) data
alpha: significance level (0.05 default)
Output:
trend: tells the trend (increasing, decreasing or no trend)
h: True (if trend is present) or False (if trend is absence)
p: p-value of the significance test
z: normalized test statistics
s: Mann-Kendal's score
var_s: Variance S
slope: sen's slope
Examples
--------
>>> import pymannkendall as mk
>>> x = np.random.rand(1000)
>>> trend,h,p,z,tau,s,var_s,slope = mk.pre_whitening_modification_test(x,0.05)
"""
res = namedtuple('Modified_Mann_Kendall_Test_PreWhitening_Approach', ['trend', 'h', 'p', 'z', 'Tau', 's', 'var_s', 'slope'])
x, c = __preprocessing(x)
x, n = __missing_values_analysis(x, method = 'skip')
# PreWhitening
acf_1 = __acf(x, nlags=1)[1]
a = range(0, n-1)
b = range(1, n)
x = x[b] - x[a]*acf_1
n = len(x)
s = __mk_score(x, n)
var_s = __variance_s(x, n)
Tau = s/(.5*n*(n-1))
z = __z_score(s, var_s)
p, h, trend = __p_value(z, alpha)
slope = sens_slope(x)
return res(trend, h, p, z, Tau, s, var_s, slope)
def trend_free_pre_whitening_modification_test(x, alpha = 0.05):
"""
This function checks the Modified Mann-Kendall (MK) test using the trend-free Pre-Whitening method proposed by Yue and Wang (2002).
Input:
x: a vector (list, numpy array or pandas series) data
alpha: significance level (0.05 default)
Output:
trend: tells the trend (increasing, decreasing or no trend)
h: True (if trend is present) or False (if trend is absence)
p: p-value of the significance test
z: normalized test statistics
s: Mann-Kendal's score
var_s: Variance S
slope: sen's slope
Examples
--------
>>> import pymannkendall as mk
>>> x = np.random.rand(1000)
>>> trend,h,p,z,tau,s,var_s,slope = mk.trend_free_pre_whitening_modification_test(x,0.05)
"""
res = namedtuple('Modified_Mann_Kendall_Test_Trend_Free_PreWhitening_Approach', ['trend', 'h', 'p', 'z', 'Tau', 's', 'var_s', 'slope'])
x, c = __preprocessing(x)
x, n = __missing_values_analysis(x, method = 'skip')
# detrending
slope = sens_slope(x)
x_detrend = x - np.arange(1,n+1) * slope
# PreWhitening
acf_1 = __acf(x_detrend, nlags=1)[1]
a = range(0, n-1)
b = range(1, n)
x = x_detrend[b] - x_detrend[a]*acf_1
n = len(x)
x = x + np.arange(1,n+1) * slope
s = __mk_score(x, n)
var_s = __variance_s(x, n)
Tau = s/(.5*n*(n-1))
z = __z_score(s, var_s)
p, h, trend = __p_value(z, alpha)
slope = sens_slope(x)
return res(trend, h, p, z, Tau, s, var_s, slope)
def multivariate_test(x, alpha = 0.05):
"""
This function checks the Multivariate Mann-Kendall (MK) test, which is originally proposed by R. M. Hirsch and J. R. Slack (1984) for the seasonal Mann-Kendall test. Later this method also used Helsel (2006) for Regional Mann-Kendall test.
Input:
x: a matrix of data
alpha: significance level (0.05 default)
Output:
trend: tells the trend (increasing, decreasing or no trend)
h: True (if trend is present) or False (if trend is absence)
p: p-value of the significance test
z: normalized test statistics
Tau: Kendall Tau
s: Mann-Kendal's score
var_s: Variance S
slope: sen's slope
Examples
--------
>>> import pymannkendall as mk
>>> x = np.random.rand(1000)
>>> trend,h,p,z,tau,s,var_s,slope = mk.multivariate_test(x,0.05)
"""
res = namedtuple('Multivariate_Mann_Kendall_Test', ['trend', 'h', 'p', 'z', 'Tau', 's', 'var_s', 'slope'])
s = 0
var_s = 0
denom = 0
x, c = __preprocessing(x)
# x, n = __missing_values_analysis(x, method = 'skip') # It makes all column at the same size
for i in range(c):
if c == 1:
x_new, n = __missing_values_analysis(x, method = 'skip') # It makes all column at deferent size
else:
x_new, n = __missing_values_analysis(x[:,i], method = 'skip') # It makes all column at deferent size
s = s + __mk_score(x_new, n)
var_s = var_s + __variance_s(x_new, n)
denom = denom + (.5*n*(n-1))
Tau = s/denom
z = __z_score(s, var_s)
p, h, trend = __p_value(z, alpha)
slope = seasonal_sens_slope(x, period = c)
return res(trend, h, p, z, Tau, s, var_s, slope)
def seasonal_test(x, period = 12, alpha = 0.05):
"""
This function checks the Seasonal Mann-Kendall (MK) test (Hirsch, R. M., Slack, J. R. 1984).
Input:
x: a vector of data
period: seasonal cycle. For monthly data it is 12, weekly data it is 52 (12 is the default)
alpha: significance level (0.05 is the default)
Output:
trend: tells the trend (increasing, decreasing or no trend)
h: True (if trend is present) or False (if trend is absence)
p: p-value of the significance test
z: normalized test statistics
Tau: Kendall Tau
s: Mann-Kendal's score
var_s: Variance S
slope: sen's slope
Examples
--------
>>> import pymannkendall as mk
>>> x = np.random.rand(1000)
>>> trend,h,p,z,tau,s,var_s,slope = mk.seasonal_test(x,0.05)
"""
res = namedtuple('Seasonal_Mann_Kendall_Test', ['trend', 'h', 'p', 'z', 'Tau', 's', 'var_s', 'slope'])
x, c = __preprocessing(x)
n = len(x)
if x.ndim == 1:
if np.mod(n,period) != 0:
x = np.pad(x,(0,period - np.mod(n,period)), 'constant', constant_values=(np.nan,))
x = x.reshape(int(len(x)/period),period)
trend, h, p, z, Tau, s, var_s, slope = multivariate_test(x, alpha = alpha)
return res(trend, h, p, z, Tau, s, var_s, slope)
def regional_test(x, alpha = 0.05):
"""
This function checks the Regional Mann-Kendall (MK) test (Helsel 2006).
Input:
x: a matrix of data
alpha: significance level (0.05 default)
Output:
trend: tells the trend (increasing, decreasing or no trend)
h: True (if trend is present) or False (if trend is absence)
p: p-value of the significance test
z: normalized test statistics
Tau: Kendall Tau
s: Mann-Kendal's score
var_s: Variance S
slope: sen's slope
Examples
--------
>>> import pymannkendall as mk
>>> x = np.random.rand(1000)
>>> trend,h,p,z,tau,s,var_s,slope = mk.regional_test(x,0.05)
"""
res = namedtuple('Regional_Mann_Kendall_Test', ['trend', 'h', 'p', 'z', 'Tau', 's', 'var_s', 'slope'])
trend, h, p, z, Tau, s, var_s, slope = multivariate_test(x)
return res(trend, h, p, z, Tau, s, var_s, slope)
def correlated_multivariate_test(x, alpha = 0.05):
"""
This function checks the Correlated Multivariate Mann-Kendall (MK) test (Libiseller and Grimvall (2002)).
Input:
x: a matrix of data
alpha: significance level (0.05 default)
Output:
trend: tells the trend (increasing, decreasing or no trend)
h: True (if trend is present) or False (if trend is absence)
p: p-value of the significance test
z: normalized test statistics
Tau: Kendall Tau
s: Mann-Kendal's score
var_s: Variance S
slope: sen's slope
Examples
--------
>>> import pymannkendall as mk
>>> x = np.random.rand(1000)
>>> trend,h,p,z,tau,s,var_s,slope = mk.correlated_multivariate_test(x,0.05)
"""
res = namedtuple('Correlated_Multivariate_Mann_Kendall_Test', ['trend', 'h', 'p', 'z', 'Tau', 's', 'var_s', 'slope'])
x, c = __preprocessing(x)
x, n = __missing_values_analysis(x, method = 'skip')
s = 0
denom = 0
for i in range(c):
s = s + __mk_score(x[:,i], n)
denom = denom + (.5*n*(n-1))
Tau = s/denom
Gamma = np.ones([c,c])
for i in range(1,c):
for j in range(i):
k = __K(x[:,i], x[:,j])
ri = __R(x[:,i])
rj = __R(x[:,j])
Gamma[i,j] = (k + 4 * np.sum(ri * rj) - n*(n+1)**2)/3
Gamma[j,i] = Gamma[i,j]
for i in range(c):
k = __K(x[:,i], x[:,i])
ri = __R(x[:,i])
rj = __R(x[:,i])
Gamma[i,i] = (k + 4 * np.sum(ri * rj) - n*(n+1)**2)/3
var_s = np.sum(Gamma)
z = s / np.sqrt(var_s)
p, h, trend = __p_value(z, alpha)
slope = seasonal_sens_slope(x, period=c)
return res(trend, h, p, z, Tau, s, var_s, slope)
def correlated_seasonal_test(x, period = 12 ,alpha = 0.05):
"""
This function checks the Correlated Seasonal Mann-Kendall (MK) test (Hipel [1994] ).
Input:
x: a matrix of data
period: seasonal cycle. For monthly data it is 12, weekly data it is 52 (12 is default)
alpha: significance level (0.05 default)
Output:
trend: tells the trend (increasing, decreasing or no trend)
h: True (if trend is present) or False (if trend is absence)
p: p-value of the significance test
z: normalized test statistics
Tau: Kendall Tau
s: Mann-Kendal's score
var_s: Variance S
slope: sen's slope
Examples
--------
>>> import pymannkendall as mk
>>> x = np.random.rand(1000)
>>> trend,h,p,z,tau,s,var_s,slope = mk.correlated_seasonal_test(x,0.05)
"""
res = namedtuple('Correlated_Seasonal_Mann_Kendall_test', ['trend', 'h', 'p', 'z', 'Tau', 's', 'var_s', 'slope'])
x, c = __preprocessing(x)
n = len(x)
if x.ndim == 1:
if np.mod(n,period) != 0:
x = np.pad(x,(0,period - np.mod(n,period)), 'constant', constant_values=(np.nan,))
x = x.reshape(int(len(x)/period),period)
trend, h, p, z, Tau, s, var_s, slope = correlated_multivariate_test(x)
return res(trend, h, p, z, Tau, s, var_s, slope)
def partial_test(x, alpha = 0.05):
"""
This function checks the Partial Mann-Kendall (MK) test (Libiseller and Grimvall (2002)).
Input:
x: a matrix with 2 columns
alpha: significance level (0.05 default)
Output:
trend: tells the trend (increasing, decreasing or no trend)
h: True (if trend is present) or False (if trend is absence)
p: p-value of the significance test
z: normalized test statistics
Tau: Kendall Tau
s: Mann-Kendal's score
var_s: Variance S
slope: sen's slope
Examples
--------
>>> import pymannkendall as mk
>>> x = np.random.rand(1000)
>>> trend,h,p,z,tau,s,var_s,slope = mk.partial_test(x,0.05)
"""
res = namedtuple('Partial_Mann_Kendall_Test', ['trend', 'h', 'p', 'z', 'Tau', 's', 'var_s', 'slope'])
x_old, c = __preprocessing(x)
x_old, n = __missing_values_analysis(x_old, method = 'skip')
if c != 2:
raise ValueError('Partial Mann Kendall test required two parameters/columns. Here column no ' + str(c) + ' is not equal to 2.')
x = x_old[:,0]
y = x_old[:,1]
x_score = __mk_score(x, n)
y_score = __mk_score(y, n)
k = __K(x, y)
rx = __R(x)
ry = __R(y)
sigma = (k + 4 * np.sum(rx * ry) - n*(n+1)**2)/3
rho = sigma / (n*(n-1)*(2*n+5)/18)
s = x_score - rho * y_score
var_s = (1 - rho**2) * (n*(n-1)*(2*n+5))/18
Tau = x_score/(.5*n*(n-1))
z = s / np.sqrt(var_s)
p, h, trend = __p_value(z, alpha)
slope = sens_slope(x)
return res(trend, h, p, z, Tau, s, var_s, slope)
scipy.stats.kendalltau() 函数
Kendall's tau-b(肯德尔)等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量(时间—水文要素)均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格;
scipy.stats.kendalltau — SciPy v0.19.1 Reference Guide
from scipy import stats
import pandas as pd
import numpy as np
data = pd.read_csv(r"C:\Users\Leon\Desktop\Pre.csv")
#print (data)
###38行*994列(38年994个cell)
x = range(38)
print (x)
y = np.zeros((0))
for j in range(994):
b = stats.kendalltau(x,data.values[:,j]) ##MK检验,结果包含两个参数:tau, p_value
y = np.append(y, b, axis=0)
print(b)
print(type(y))
#np.savetxt("C:/Users/Leon/Desktop/P.txt",y) ##保存ndarray类型数据
之前文章里的关于线性回归的模型,都是基于最小二乘法来实现的。但是,当数据样本点出现很多的异常点(outliers),这些异常点对回归模型的影响会非常的大,传统的基于最小二乘的回归方法将不适用。
比如下图中所示,数据中存在一个异常点,如果不剔除改点,适用OLS方法来做回归的话,那么就会得到途中红色的那条线;如果将这个异常点剔除掉的话,那么就可以得到图中蓝色的那条线。显然,蓝色的线比红色的线对数据有更强的解释性,这就是OLS在做回归分析时候的弊端。
当然,可以考虑在做回归分析之前,对数据做预处理,剔除掉那些异常点。但是,在实际的数据中,存在两个问题:
异常点并不能很好的确定,并没有一个很好的标准用于确定哪些点是异常点
即便确定了异常点,但这些被确定为异常的点,真的是错误的数据吗?很有可能这看似异常的点,就是原始模型的数据,如果是这样的话,那么这些异常的点就会带有大量的原始模型的信息,剔除之后就会丢失大量的信息。
再比如下面这幅图,其中红色的都是异常点,但是很难从数据中剔除出去。
稳健回归(Robust regression),就是当最小二乘法遇到上述的,数据样本点存在异常点的时候,用于代替最小二乘法的一个算法。当然,稳健回归还可以用于异常点检测,或者是找出那些对模型影响最大的样本点。
关于稳健回归,有一个名词需要做解释:Breakdown point,这个名词我并不想翻译,我也没找到一个很好的中文翻译。对于一个估计器而言,原始数据中混入了脏数据,那么,Breakdown point 指的就是在这个估计器给出错误的模型估计之前,脏数据最大的比例 αα,Breakdown point 代表的是一个估计器对脏数据的最大容忍度。
这个均值估计器的Breakdown point 为0,因为使任意一个xixi变成足够大的脏数据之后,上面估计出来的均值,就不再正确了。
毫无疑问,Breakdown point越大,估计器就越稳健。
Breakdown point 是不可能达到 50% 的,因为如果总体样本中超过一半的数据是脏数据了,那么从统计上来说,就无法将样本中的隐藏分布和脏数据的分布给区分开来。
本文主要介绍两种稳健回归模型:RANSAC(RANdom SAmple Consensus 随机采样一致性)和Theil-Sen estimator。
RANSAC算法的输入是一组观测数据(往往含有较大的噪声或无效点),它是一种重采样技术(resampling technique),通过估计模型参数所需的最小的样本点数,来得到备选模型集合,然后在不断的对集合进行扩充,其算法步骤为:
RANSAC算法是从输入样本集合的内点的随机子集中学习模型。
RANSAC算法是一个非确定性算法(non-deterministic algorithm),这个算法只能得以一定的概率得到一个还不错的结果,在基本模型已定的情况下,结果的好坏程度主要取决于算法最大的迭代次数。
RANSAC算法在线性和非线性回归中都得到了广泛的应用,而其最典型也是最成功的应用,莫过于在图像处理中处理图像拼接问题,这部分在Opencv中有相关的实现。
从总体上来讲,RANSAC算法将输入样本分成了两个大的子集:内点(inliers)和外点(outliers)。其中内点的数据分布会受到噪声的影响;而外点主要来自于错误的测量手段或者是对数据错误的假设。而RANSAC算法最终的结果是基于算法所确定的内点集合得到的。
下面这份代码是RANSAC的适用实例:
# -*- coding: utf-8 -*-
"""
author : [email protected]
time : 2016-07-07-15-36
"""
import numpy as np
import time
from sklearn import linear_model,datasets
import matplotlib.pyplot as plt
# 产生数据样本点集合
# 样本点的特征X维度为1维,输出y的维度也为1维
# 输出是在输入的基础上加入了高斯噪声N(0,10)
# 产生的样本点数目为1000个
n_samples = 1000
X, y, coef = datasets.make_regression(n_samples=n_samples,
n_features=1,
n_informative=1,
noise=10,
coef=True,
random_state=0)
# 将上面产生的样本点中的前50个设为异常点(外点)
# 即:让前50个点偏离原来的位置,模拟错误的测量带来的误差
n_outliers = 50
np.random.seed(int(time.time()) % 100)
X[:n_outliers] = 3 + 0.5 * np.random.normal(size=(n_outliers, 1))
y[:n_outliers] = -3 + 0.5 * np.random.normal(size=n_outliers)
# 用普通线性模型拟合X,y
model = linear_model.LinearRegression()
model.fit(X, y)
# 使用RANSAC算法拟合X,y
model_ransac = linear_model.RANSACRegressor(linear_model.LinearRegression())
model_ransac.fit(X, y)
inlier_mask = model_ransac.inlier_mask_
outlier_mask = np.logical_not(inlier_mask)
# 使用一般回归模型和RANSAC算法分别对测试数据做预测
line_X = np.arange(-5, 5)
line_y = model.predict(line_X[:, np.newaxis])
line_y_ransac = model_ransac.predict(line_X[:, np.newaxis])
print "真实数据参数:", coef
print "线性回归模型参数:", model.coef_
print "RANSAC算法参数: ", model_ransac.estimator_.coef_
plt.plot(X[inlier_mask], y[inlier_mask], '.g', label='Inliers')
plt.plot(X[outlier_mask], y[outlier_mask], '.r', label='Outliers')
plt.plot(line_X, line_y, '-k', label='Linear Regression')
plt.plot(line_X, line_y_ransac, '-b', label="RANSAC Regression")
plt.legend(loc='upper left')
plt.show()
运行结果为:
真实数据参数: 82.1903908408
线性回归模型参数: [ 55.19291974]
RANSAC算法参数: [ 82.08533159]
Theil-Sen回归是一个参数中值估计器,它适用泛化中值,对多维数据进行估计,因此其对多维的异常点(outliers 外点)有很强的稳健性。
在实践中发现,随着数据特征维度的提升,Theil-Sen回归的效果不断的下降,在高维数据中,Theil-Sen回归的效果有时甚至还不如OLS(最小二乘)。
在之间的文章《线性回归》中讨论过,OLS方法是渐进无偏的,Theil-Sen方法在渐进无偏方面和OLS性能相似。和OLS方法不同的是,Theil-Sen方法是一种非参数方法,其对数据的潜在分布不做任何的假设。Theil-Sen方法是一种基于中值的估计其,所以其对异常点有更强的稳健性。
在单变量回归问题中,Theil-Sen方法的Breakdown point为29.3%,也就是说,Theil-Sen方法可以容忍29.3%的数据是outliers。
# -*- coding: utf-8 -*-
"""
@author : [email protected]
@time ;2016-07-08_08-50
Theil-Sen 回归
本例生成一个数据集,然后在该数据集上测试Theil-Sen回归
"""
print __doc__
import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, TheilSenRegressor,\
RANSACRegressor
estimators = [('OLS', LinearRegression()),
('Theil-Sen', TheilSenRegressor())]
# 异常值仅仅出现在y轴
np.random.seed((int)(time.time() % 100))
n_samples = 200
# 线性模型的函数形式为: y = 3 * x + N(2, .1 ** 2)
x = np.random.randn(n_samples)
w = 3.
c = 2.
noise = c + 0.1 * np.random.randn(n_samples)
y = w * x + noise
# 加入10%的异常值,最后20个值称为异常值
y[-20:] += -20 * x[-20:]
X = x[:, np.newaxis]
plt.plot(X, y, 'k+', mew=2, ms=8)
line_x = np.array([-3, 3])
for name, estimator in estimators:
t0 = time.time()
estimator.fit(X, y)
elapsed_time = time.time() - t0
y_pred = estimator.predict(line_x.reshape(2, 1))
plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)'
%(name, elapsed_time))
plt.axis('tight')
plt.legend(loc='upper left')
plt.show()