国外资源国内镜像访问(亲测)

关于huggingface模型下载:

手动下载:https://mirrors.tuna.tsinghua.edu.cn/hugging-face-models/hfl/

代码下载:

import llama
#MODEL = '/home/guo/llama_test/llama_model'
MODEL = 'decapoda-research/llama-7b-hf'
# MODEL = 'decapoda-research/llama-13b-hf'
# MODEL = 'decapoda-research/llama-30b-hf'
# MODEL = 'decapoda-research/llama-65b-hf'
#建议使用tuna 与 bfsu
tokenizer = llama.LLaMATokenizer.from_pretrained(MODEL,mirror='tuna')
model = llama.LLaMAForCausalLM.from_pretrained(MODEL, mirror='tuna',low_cpu_mem_usage = True)
model.to('cpu')
batch = tokenizer("Yo mama", return_tensors = "pt")
print(tokenizer.decode(model.generate(batch["input_ids"], max_length=100)[0]))

关于github的镜像仓库下载,

参考:(4条消息) git clone 换源 / GitHub 国内镜像_git换源_面里多加汤的博客-CSDN博客:

https://gitclone.com
# 服务器位于杭州(可用)
使用方式:原始git地址:https://github.com/junegunn/vim-plug
克隆地址: git clone https://gitclone.com/github.com/junegunn/vim-plug

关于pypi源:

linux进入到~/.pip/pip.conf
[global]
index-url=http://mirrors.aliyun.com/pypi/simple
trusted-host=mirrors.aliyun.com
window进入到~/pip/pip.conf
[global]
index-url=http://mirrors.aliyun.com/pypi/simple
trusted-host=mirrors.aliyun.com

关于conda源:

在~/.condarc修改conda 源:
channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/fastai/
show_channel_urls: true
ssl_verify: false
原文链接:https://blog.csdn.net/sslfk/article/details/127857073

你可能感兴趣的:(深度学习基础,人工智能,python)