缓存的工作机制是先从缓存中读取数据,如果没有再从慢速设备上读取实际数据,并将数据存入缓存中。通常情况下,我们会将那些经常读取且不经常修改的数据或昂贵(CPU/IO)的且对于相同请求有相同计算结果的数据存储到缓存中。
它能够让数据更加接近于使用者,下图所示。
+---------------------+
| 应用程序 |
+---------------------+
|
v
+---------------------+
| 缓存层 |
+---------------------+
|
v
+-----------------------------+
| 数据源 |
+-----------------------------+
这个图表示在应用程序和数据源之间添加了一个缓存层。在访问数据时,应用程序首先会尝试从缓存层中获取数据。如果数据已经存在于缓存中,则直接返回。否则,需要从数据源获取数据,并将其存储到缓存中,以便以后能够更快地获取相同的数据。这样做可以显著提高应用程序的性能和响应速度,并减轻数据源的负载。
一个典型的例子是CPU–L1/L2–内存–磁盘的存储结构。当CPU需要数据时,它会先从L1/L2缓存中读取数据,如果没有则到内存中查找,最后再到磁盘上找。此外,在使用Maven时,我们的依赖通常会先从本地仓库中查找,然后再到本地服务器仓库查找,最后才去远程仓库服务器查找。京东的物流为什么如此快?这是因为他们在各个地方都建立了分仓库,如果货物在该仓库内,则配送速度非常快。
+---------------------+
| CPU |
+---------------------+
|
v
+------------------------+
| L1/L2 Cache |
+------------------------+
|
v
+-----------------+
| 内存 |
+-----------------+
|
v
+----------------------------+
| 磁盘 |
+----------------------------+
即从缓存中读取数据的次数 与 总读取次数的比率,命中率越高越好:
命中率 = 从缓存中读取次数 / (总读取次数[从缓存中读取次数 + 从慢速设备上读取的次数])
Miss率 = 没有从缓存中读取的次数 / (总读取次数[从缓存中读取次数 + 从慢速设备上读取的次数])
这是一个非常重要的监控指标,如果做缓存一定要健康这个指标来看缓存是否工作良好;
在合理应用缓存前,需要了解缓存领域里相关的几个常用术语:
【缓存命中】: 表示数据已经存在于缓存中,可以直接从缓存获取数据,无需重新访问原始数据源。
【缓存未命中】:表示数据不在缓存中,如果缓存空间有剩余,则会将数据添加到缓存中。
【存储成本】:当出现缓存未命中时,需要从原始数据源拉取数据并将其放置到缓存中。这个操作的时间和空间成本称为“存储成本”。
【缓存失效】:当数据源发生更改时,缓存中的数据将变得过时,需要更新或清除缓存以确保下次请求时能够访问最新数据。
【缓存污染】:将不常访问的数据存储到缓存中,可能会占用缓存空间,导致高频访问的数据无法存储到缓存中。
【移除策略】(Eviction policy):即如果缓存满了,从缓存中移除数据的策略;常见的有LFU、LRU、FIFO等,需要通过替换策略删除缓存中的一些数据来腾出空间。常见的替换策略包括以下几种:
【存活期】TTL(Time To Live ),即从缓存中创建时间点开始直到它到期的一个时间段(不管在这个时间段内有没有访问都将过期)
【空闲期】TTI(Time To Idle),即一个数据多久没被访问将从缓存中移除的时间。
到此,我们已经基本了解了缓存的概念。在Java中,我们通常会对方法调用进行缓存控制,例如对于方法 “getValueByKey(String key)”,我们应该首先从缓存中查找是否有对应的数据,如果没有再调用该方法从数据库中加载用户数据,并将其添加到缓存中。这样,在下一次调用相同的方法时,就可以直接从缓存中获取数据,而无需再次访问数据库。
自Spring 3.1起,提供了Cache支持,且提供了Cache抽象,在此之前一般通过AOP实现,使用Spring Cache的好处:提供基本的Cache抽象,方便切换各种底层Cache;通过注解Cache可以实现类似于事务一样,缓存逻辑透明的应用到我们的业务代码上,且只需要更少的代码就可以完成;
对于Spring Cache抽象,主要从以下几个方面学习:
+------------------------+ +-------------------------+
| Cache API | | 默认提供的Cache实现 |
+------------------------+ +-------------------------+
| |
v v
+------------------------+ +-------------------------+
| Cache注解 | | 实现复杂的Cache逻辑 |
+------------------------+ +-------------------------+
开发者首先可以通过Cache API与默认提供的Cache实现进行交互,获取并存储数据。而在一些情况下,可以通过使用Cache注解来简化对缓存的使用。此外,如果需要实现更复杂的缓存逻辑,也可以自己实现相应的缓存逻辑。
package org.springframework.cache;
public interface Cache {
String getName(); //缓存的名字
Object getNativeCache(); //得到底层使用的缓存,如Ehcache
ValueWrapper get(Object key); //根据key得到一个ValueWrapper,然后调用其get方法获取值
<T> T get(Object key, Class<T> type);//根据key,和value的类型直接获取value
void put(Object key, Object value);//往缓存放数据
void evict(Object key);//从缓存中移除key对应的缓存
void clear(); //清空缓存
interface ValueWrapper { //缓存值的Wrapper
Object get(); //得到真实的value
}
}
通过上面的源码可以看出来,Spring-Cache是提供了缓存操作的读取/写入/移除方法。
默认提供了如下实现:
另外,因为我们在应用中并不是使用一个Cache,而是多个,因此Spring还提供了CacheManager抽象,用于缓存的管理:
package org.springframework.cache;
import java.util.Collection;
public interface CacheManager {
Cache getCache(String name); //根据Cache名字获取Cache
Collection<String> getCacheNames(); //得到所有Cache的名字
}
另外还提供了CompositeCacheManager用于组合CacheManager,即可以从多个CacheManager中轮询得到相应的Cache,如
<bean id="cacheManager" class="org.springframework.cache.support.CompositeCacheManager">
<property name="cacheManagers">
<list>
<ref bean="ehcacheManager"/>
<ref bean="jcacheManager"/>
list>
property>
<property name="fallbackToNoOpCache" value="true"/>
bean>
当我们调用cacheManager.getCache(cacheName) 时,会先从第一个cacheManager中查找有没有cacheName的cache,如果没有接着查找第二个,如果最后找不到,因为fallbackToNoOpCache=true,那么将返回一个NOP的Cache否则返回null。
除了GuavaCacheManager之外,其他Cache都支持Spring事务的,即如果事务回滚了,Cache的数据也会移除掉。
Spring不进行Cache的缓存策略的维护,这些都是由底层Cache自己实现,Spring只是提供了一个Wrapper,提供一套对外一致的API。
缓存都是key-value风格的,模糊匹配本来就不应该是Cache要做的;而是通过自己的缓存代码实现;
假设有一个缓存,其中存储了list类型的数据。现在我执行了一个update(user)方法,但并不想清除整个缓存,而只是希望替换掉更新过的元素。
在现有的缓存抽象中,并没有很好的解决方案,可以考虑通过在之前的Helper方法中使用condition来解决这个问题,但这并不是一种十分优雅的方式。
因此,我认为Spring Cache注解还存在一些不完美之处。针对这种情况,我们可以通过对Cacheable注解进行增强来实现更加灵活的缓存控制。具体地说,我们可以在Cacheable注解中添加SpEL表达式,用于定制要缓存的数据、方法执行前后的条件以及缓存成功后的其他逻辑。例如:
@Cacheable(cacheName = "缓存名称", key="缓存key/SpEL", value="缓存值/SpEL/不填默认返回值", beforeCondition="方法执行之前的条件/SpEL", afterCondition="方法执行后的条件/SpEL", afterCache="缓存之后执行的逻辑/SpEL")
当然,对于大多数场景,Spring Cache注解已经足够使用。如果需要处理更加复杂的场景,则可以考虑使用AOP。如果需要自定义实现缓存逻辑,则应该使用Spring Cache API进行缓存抽象。