- 开源瑰宝:全方位深度揭秘“随机数据生成器”
虞亚竹Luna
开源瑰宝:全方位深度揭秘“随机数据生成器”common-random简单易用的随机数据生成器。生成各种比较真实的假数据。一般用于开发和测试阶段的数据填充模拟。支持各类中国特色本地化的数据格式。Aneasy-touserandomdatagenerator.Generallyusedfordatafilling,simulation,demonstrationandotherscenariosint
- 探索数据安全新境界:Apache Spark SQL Ranger Security插件深度揭秘
乌昱有Melanie
探索数据安全新境界:ApacheSparkSQLRangerSecurity插件深度揭秘项目地址:https://gitcode.com/gh_mirrors/sp/spark-ranger随着大数据的爆炸性增长,数据安全性成为了企业不可忽视的核心议题。在这一背景下,【ApacheSparkSQLRangerSecurityPlugin】以其强大的数据访问控制能力脱颖而出,成为数据处理领域的明星级
- 阿里云全球节点:技术无国界,开发者如何借力数字新基建
AWS官方合作商
阿里云云计算服务器
在全球化进程加速的今天,开发者与企业的技术需求早已跨越地理边界。无论是跨境电商的数据同步、游戏出海的低延迟保障,还是跨国团队的高效协作,服务器的地理位置与稳定性直接决定了业务的成败。阿里云作为国内最早布局全球化基础设施的云服务商之一,其海外服务器的核心价值并非简单的“资源覆盖”,而是通过技术架构与本地化服务,为开发者构建了一张无缝连接的“数字高速公路”。一、全球化的本质:不止于服务器,而是技术普惠
- Java 大视界 -- Java 大数据在智能医疗远程会诊与专家协作中的技术支持(146)
青云交
大数据新视界Java大视界java大数据智能医疗远程会诊专家协作数据安全病例诊断
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- vite项目中vite.config.js使用.env.development文件中的配置数据
初遇你时动了情
vitereactvue3javascriptecmascriptvite
如下图.env和vite.config.js配置同级目录loadEnv就可以获取.env配置信息import{defineConfig,loadEnv}from"vite";importreactfrom"@vitejs/plugin-react-swc";import{resolve}from"path";importvitePluginImpfrom"vite-plugin-imp";impo
- 05.列表标签
龙哥带你学编程
#htmlcss
一、列表简介列表是网页中最常用的一种数据排列方式。有序列表:有先后顺序之分无序列表:无先后顺序之分定义列表:带有特殊含义的列表二、有序列表1、语法格式有序列表中的各个列表项是有顺序的…列表项列表项注意:ol和li是配合一起使用的,不可以单独使用;ol的子标签只能是li标签,不能是其他标签。2、基本特征有序列表是由有顺序的列表项组成的有序列表一般采用数字或字母作为顺序,默认采用数字顺序是块元素独占一
- ModuleNotFoundError: No module named ‘h5py‘
Hardess-god
python
到ModuleNotFoundError:Nomodulenamed'h5py'错误表明Python环境中没有安装h5py模块。h5py是一个用于处理HDF5二进制数据格式的Python接口,广泛用于大规模存储和操纵数据。解决方案:安装h5py要解决这个问题,你需要在你的Python环境中安装h5py。以下是如何在不同环境中安装h5py的步骤:使用pip安装如果你使用的是pip包管理器,可以通过以
- 深入探讨盘古大模型的高精度多尺度能力
Hardess-god
WRF人工智能算法
随着人工智能技术的快速发展,大模型的研究逐渐进入新的阶段。其中,盘古大模型以其卓越的高精度和多尺度处理能力成为研究热点。本文将详细分析盘古模型在高精度多尺度问题上的技术特征、优势和应用潜力,并探讨其深入研究的方向。一、盘古模型概述盘古模型是华为推出的中文预训练大模型系列,拥有数十亿甚至千亿级的参数规模。它以Transformer架构为基础,通过海量文本数据进行训练,表现出优异的自然语言理解和生成能
- postgreSQL数据库常用语法
东木月
关系型数据库:MySQLPostgreSQLpostgresql数据库database
postgreSQL常用语法1、CRUD增删改查创建用户角色createuserldcwithpassword'ldc-';创建数据库createDATABASEschool_infoENCODING='utf-8'--指定字符集TABLESPACE=
- 【赵渝强老师】在Docker中运行达梦数据库
数据库docker
Docker是一个客户端服务器(Client-Server)架构。Docker客户端和Docker守护进程交流,而Docker的守护进程是运作Docker的核心,起着非常重要的作用(如构建、运行和分发Docker容器等)。达梦官方提供了DM8在Docker容器中进行部署的镜像文件,下面通过具体的步骤进行演示。视频讲解如下:https://www.bilibili.com/video/BV1yBfB
- CSP-J备考冲刺必刷题(C++) | AcWing 1253 家谱
热爱编程的通信人
c++开发语言
本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。欢迎大家订阅我的专栏:算法题解:C++与Python实现!附上汇总贴:算法竞赛备考冲刺必刷题(C++)|汇总【题目来源】Acwing:1253.家谱-AcWing题库
- AI巨浪中的安全之舵:天空卫士助力人工智能落地远航
天空卫士
人工智能安全数据安全网络安全大数据
"AI时代的安全战场,不在云端在本地;数据治理的胜负手,不在防御在认知。"近期,众多企业纷纷接入DeepSeek大模型,迅速推动了大型模型应用的广泛铺开。无论是在制造业、金融业,还是在医疗、教育等领域,DeepSeek大模型的应用都如火如荼,遍地开花,展现出了其广泛的应用前景和巨大的商业价值。顺势而来的是DeepSeek一体机以"低成本、高算力、私有化部署"的优势席卷企业市场。因为DeepSeek
- 如何使用YOLOv8在AI-TOD数据集上进行遥感目标检测,从安装依赖项、准备数据集、配置YOLOv8、训练和评估模型以及构建GUI应用程序展示检测
计算机C9硕士_算法工程师
人工智能YOLO目标检测遥感
如何使用YOLOv8在AI-TOD数据集上进行遥感目标检测,从安装依赖项、准备数据集、配置YOLOv8、训练和评估模型以及构建GUI应用程序展示检测文章目录1.安装依赖2.数据准备3.配置YOLOv83.1加载预训练模型或自定义模型4.训练模型5.评估模型6.构建GUI应用程序(可选)以下文字及代码仅供参考。遥感目标检测,AI-TOD数据集aitod,训练集11214张,测试集集14018,验证集
- 栈和队列基础
Luther coder
算法
目录一.队列简述二.栈三.例题一.队列简述队列多用于辅助,很少有单独的题目。例如图的BFS,需要队列辅助实现。常见运用:单调队列:概念和单调栈类似。应用很少,多用于对一些算法的优化(动态规划等),不再赘述。优先队列:普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除。在优先队列中,元素被赋予优先级。当访问元素时,具有最高优先级的元素最先删除。优先队列具有最高级先出的特征。基于堆(
- 机器学习结合伏羲模型高精度多尺度气象分析与降尺度实现
Hardess-god
WRF算法人工智能
随着人工智能的发展,机器学习技术在气象预报领域展现出巨大潜力。本文详细探讨如何结合机器学习(ML)和伏羲模型进行高精度多尺度气象模拟分析,并提供详细的实现步骤和相关代码。1.研究目标与技术路线目标:结合机器学习模型与伏羲气象模式,实现区域和局地高精度降尺度。技术路线:伏羲模型提供大尺度气象数据和预报使用机器学习模型(如CNN、LSTM、XGBoost)进行降尺度2.数据准备与处理2.1气象数据获取
- 渗透测试-越权测试、sql注入
夜晚打字声
笔记
越权访问简介(BrokenAccessControl,简称BAC):web应用程序中常见漏洞,存在范围广、危害大,被OWASP列为web应用十大安全隐患第二名。该漏洞是指应用在检查授权时存在纰漏,使得攻击者在获得低权限用户账户后,利用一些方式绕过权限检查,访问或者操作其他用户或者更高权限。越权漏洞的成因主要是因为开发人员在对数据进行增、删、改、查询时对客户端请求的数据过分相信而遗漏了权限的判定越权
- 2023年全国职业院校技能大赛(高职组)“云计算应用”赛项赛卷10(公有云)
忘川_ydy
云计算云计算kubernetesopenstackdockerpythonansiblek8s
#需要资源(软件包及镜像)或有问题的,可私聊博主!!!#需要资源(软件包及镜像)或有问题的,可私聊博主!!!#需要资源(软件包及镜像)或有问题的,可私聊博主!!!模块三公有云(40分)企业选择国内公有云提供商,选择云主机、云网络、云硬盘、云防火墙、负载均衡等服务,可创建Web服务,共享文件存储服务,数据库服务,数据库集群等服务。搭建基于云原生的DevOps相关服务,构建云、边、端一体化的边缘计算系
- LLM的工具调用能力(如Function Calling)
maxmaxma
前端javascript开发语言
LLM的工具调用能力(如FunctionCalling)是增强大模型实用性的核心技术,使其能够通过生成结构化指令与外部系统交互。以下是关键要点及技术解析:一、工具调用的定义与原理核心机制LLM通过生成符合工具接口的指令(如JSON参数),触发外部工具执行。例如,用户提问天气时,模型生成{"location":"北京","date":"2025-03-22"},系统调用天气API获取数据。分工明确:
- python 列表排序
rainynights
Python
在我们实际使用中,对于列表的操作是十分常见的。对于列表的数据,在很多特殊的情况下我们需要对列表内的数据进行排列以达到我们特定的显示需求。今天,我们一起看一下python中关于列表排序的一些知识。有些时候我们希望对列表进行排序后,列表可以保存我们排序后的结果,但是很多情况下我们只是希望通过列表的排序,临时的显示排序结果而已。所以对于列表的排序可以分为永久性的排序和临时性的排序。sort()sort(
- 使用Python和LangChain构建检索增强生成(RAG)应用的详细指南
m0_57781768
pythonlangchain搜索引擎
使用Python和LangChain构建检索增强生成(RAG)应用的详细指南引言在人工智能和自然语言处理领域,利用大语言模型(LLM)构建复杂的问答(Q&A)系统是一个重要应用。检索增强生成(RetrievalAugmentedGeneration,RAG)是一种技术,通过将模型知识与额外数据结合来增强LLM的能力,使其能够回答关于特定源信息的问题。这些应用不仅限于公开数据,还可以处理私有数据和模
- 国际电商仓发(FBT)业务深度研究报告:以TikTok为例
萧十一郎@
知识科普人工智能
目录一、引言1.1研究背景与目的1.2研究方法与数据来源二、国际电商仓发(FBT)业务概述2.1FBT业务定义与运作模式2.2FBT业务在国际电商中的地位与作用三、TikTokFBT业务案例分析3.1TikTokFBT业务发展历程3.2TikTokFBT业务服务内容与优势3.3TikTokFBT业务的市场策略与布局四、国际电商仓发(FBT)业务成功案例及经验借鉴4.1成功案例展示4.2经验总结与启
- 创建Datas
一一代码
python
核心数据结构创建DataFrame```pythonimportpandasaspd#从字典创建DataFramedata={'Name':['Alice','Bob','Charlie'],'Age':[25,30,35],'City':['NewYork','LosAngeles','Chicago']}df=pd.DataFrame(data)print(df)```输出:```NameAg
- 【免费】2000-2019年各省地方财政企业所得税数据
2501_90487648
数据#省份省地方财政企业所得税
2000-2019年各省地方财政企业所得税数据1、时间:2000-2019年2、来源:国家统计局、统计年鉴3、指标:行政区划代码、地区、年份、地方财政企业所得税4、范围:31省5、指标说明:企业所得税是对企业的利润征收的一种税种,是地方财政收入的重要组成部分之一。企业所得税在地方财政中占有重要位置,通过合理的税收政策和管理,能够有效促进地方经济的健康发展与财政收入的增加。5、下载链接:2000-2
- HTTP请求过程详解
酥暮沐
http网络协议网络
一、整体流程概述HTTP请求过程从用户输入URL开始,到页面完成渲染结束,主要分为DNS解析、建立连接、发送请求、处理响应、渲染页面、断开连接六个核心阶段。重要:当用户输入URL后,浏览器首先解析域名,通过DNS查询获取服务器IP。接着通过三次握手建立TCP连接,如果是HTTPS还会进行TLS加密协商。然后浏览器发送HTTP请求,服务器处理后返回响应数据。浏览器解析HTML/CSS,构建DOM和渲
- 输了,腾讯golang一面凉了
golang学习记
golanggolang
本月正值4月,是金三银四的找工作的最佳时机。同时竞争也是很大,因为每年这个时候快要毕业的大学生也进去了找工作的潮水中。今天分享我的一位大佬朋友CC,勇闯腾讯golang的面试经历。这次面试问题的方向主要集中在计算机基础个网络方面。下面是主要问到的问题。第一个,http握手,https证书第二个,操作系统的中断,堆和栈第三个,数据库,乐观锁,悲观锁,acid等TSL四次握手的过程是什么第一次握手首先
- AI 赋能应急管理:ChatGPT、DeepSeek、Grok 的应用探索
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着人工智能(AI)技术的快速发展,大语言模型(LLM)在应急管理领域的应用逐步扩大。ChatGPT、DeepSeek、Grok等AI模型凭借强大的文本处理、数据分析和推理能力,可为灾害预警、应急响应、风险评估等提供高效支持。本文将对比三大AI模型在应急管理中的优势,并探讨其在未来智能化应急管理体系中的应用前景。2.应急管理中的核心挑战应
- android sqlite 数据库简单封装示例(java)
mmsx
android作业源码分享java数据库android
sqlite数据库简单封装示例,使用记事本数据库表进行示例。首先继承SQLiteOpenHelper使用sql语句进行创建一张表。publicclassnoteDBHelperextendsSQLiteOpenHelper{publicnoteDBHelper(Contextcontext,Stringname,SQLiteDatabase.CursorFactoryfactory,intvers
- 如何使用idea 连接达梦数据库?
大大怪~将军
intellij-idea数据库mybatis
1:首先打开idea,点击右上角的数据库2:将达梦数据库的jar包配置一下(一般在driver/jdbc目录下)3:点击应用或者确定之后,重新点击idea右侧的数据库4:连接地址:jdbc:dm://127.0.0.1:5236/DMSERVER?zeroDateTimeBehavior=convertToNull&useUnicode=true&characterEncoding=utf-8
- 一文说清楚什么是预训练(Pre-Training)、微调(Fine-Tuning),零基础小白建议收藏!!
小城哇哇
人工智能语言模型AI大模型大模型微调预训练agiLLM
前言预训练和微调是现代AI模型的核心技术,通过两者的结合,机器能够在处理复杂任务时表现得更为高效和精准。预训练为模型提供了广泛的语言能力,而微调则确保了模型能够根据特定任务进行细化和优化。近年来,人工智能(AI)在各个领域的突破性进展,尤其是在自然语言处理(NLP)方面,引起了广泛关注。两项重要的技术方法——预训练和微调,成为了AI模型发展的基石。预训练通常是指在大规模数据集上进行模型训练,以帮助
- 2025.03.22【读书笔记】| fastq-multx:高效barcode拆分数据解决工具
穆易青
读书笔记数据处理读书笔记linux运维服务器
文章目录1.工具介绍为什么需要`fastq-multx`?`fastq-multx`的特点2.安装方式通过源代码编译安装使用包管理器安装3.使用命令基本命令高级参数设置结语1.工具介绍在生物信息学的世界里,工具的选择至关重要。今天,我们要介绍的这个工具,就是fastq-multx,一个用于高效barcode去复用和demultiplex的解决方案。fastq-multx是一个专门设计用于处理高通量
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,