业务发展初期,数据库中量一般都不高,也不太容易出一些性能问题或者出的问题也不大,但是当数据库的量级达到一定规模之后,如果缺失有效的预警、监控、处理等手段则会对用户的使用体验造成影响,严重的则会直接导致订单、金额直接受损,因而就需要时刻关注数据库的性能问题。
数据库性能优化的常见手段有很多,比如添加索引、分库分表、优化连接池等,具体如下:
序号 | 类型 | 措施 | 说明 |
1 | 物理级别 | 提升硬件性能 | 将数据库安装到更高配置的服务器上会有立竿见影的效果,例如提高CPU配置、增加内存容量、采用固态硬盘等手段,在经费允许的范围可以尝试。 |
2 | 应用级别 | 连接池参数优化 | 我们大部分的应用都是使用连接池来托管数据库的连接,但是大部分都是默认的配置,因而配置好超时时长、连接池容量等参数就显得尤为重要。 1、 如果链接长时间被占用,新的请求无法获取到新的连接,就会影响到业务。 2、 如果连接数设置的过小,那么即使硬件资源没问题,也无法发挥其功效。之前公司做过一些压测,但就是死活不达标,最后发现是由于连接数太小。 |
3 | 单表级别 | 合理运用索引 | 如果数据量较大,但是又没有合适的索引,就会拖垮整个性能,但是索引是把双刃剑,并不是说索引越多越好,而是要根据业务的需要进行适当的添加和使用。 缺失索引、重复索引、冗余索引、失控索引这几类情况其实都是对系统很大的危害。 |
4 | 库表级别 | 分库分表 | 当数据量较大的时候,只使用索引就意义不大了,需要做好分库分表的操作,合理的利用好分区键,例如按照用户ID、订单ID、日期等维度进行分区,可以减少扫描范围。 |
5 | 监控级别 | 加强运维 | 针对线上的一些系统还需要进一步的加强监控,比如订阅一些慢SQL日志,找到比较糟糕的一些SQL,也可以利用业务内一些通用的工具,例如druid组件等。 |
首先了解一下数据的底层架构,也有助于我们做更好优化。
一次查询请求的执行过程
我们重点关注第二部分和第三部分,第二部分其实就是Server层,这层主要就是负责查询优化,制定出一些执行计划,然后调用存储引擎给我们提供的各种底层基础API,最终将数据返回给客户端。
目前比较常用的是InnoDB存储引擎,本文讨论也是基于InnoDB引擎。我们一直说的加索引,那到底什么是索引、索引又是如何形成的呢、索引又如何应用呢?这个话题其实很大也很小,说大是因为他底层确实很复杂,说小是因为在大部分场景下程序员只需要添加索引就好,不太需要了解太底层原理,但是如果了解不透彻就会引发线上问题,因而本文平衡了大家的理解成本和知识深度,有一定底层原理介绍,但是又不会太过深入导致难以理解。
首先来做个实验:
创建一个表,目前是只有一个主键索引
CREATE TABLE `t1`(
a int NOT NULL,
b int DEFAULT NULL,
c int DEFAULT NULL,
d int DEFAULT NULL,
e varchar(20) DEFAULT NULL,
PRIMARYKEY(a)
)ENGINE=InnoDB
插入一些数据:
insert into test.t1 values(4,3,1,1,'d');
insert into test.t1 values(1,1,1,1,'a');
insert into test.t1 values(8,8,8,8,'h');
insert into test.t1 values(2,2,2,2,'b');
insert into test.t1 values(5,2,3,5,'e');
insert into test.t1 values(3,3,2,2,'c');
insert into test.t1 values(7,4,5,5,'g');
insert into test.t1 values(6,6,4,4,'f');
MYSQL从磁盘读取数据到内存是按照一页读取的,一页默认是16K,而一页的格式大概如下。
每一页都包括了这么几个内容,首先是页头、其次是页目录、还有用户数据区域。
1)刚才插入的几条数据就是放到这个用户数据区域的,这个是按照主键依次递增的单向链表。
2)页目录这个是用来指向具体的用户数据区域,因为当用户数据区域的数据变多的时候也就会形成分组,而页目录就会指向不同的分组,利用二分查找可以快速的定位数据。
当数据量变多的时候,那么这一页就装不下这么多数据,就要分裂页,而每页之间都会双向链接,最终形成一个双向链表。
页内的单向链表是为了查找快捷,而页间的双向链表是为了在做范围查询的时候提效,下图为示意图,其中其二页和第三页是复制的第一页,并不真实。
而如果数据还继续累加,光这几个页也不够了,那就逐步的形成了一棵树,也就是说索引B-Tree是随着数据的积累逐步构建出来的。
最下边的一层叫做叶子节点,上边的叫做内节点,而叶子节点中存储的是全量数据,这样的树就是聚簇索引。一直有同学的理解是说索引是单独一份而数据是一份,其实MySQL中有一个原则就是数据即索引、索引即数据,真实的数据本身就是存储在聚簇索引中的,所谓的回表就是回的聚簇索引。
但是我们也不一定每次都按照主键来执行SQL语句,大部分情况下都是按照一些业务字段来,那就会形成别的索引树,例如,如果按照b,c,d来创建的索引就会长这样。
推荐1个网站,可以可视化的查看一些算法原型:
目录:
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
B+树
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
而在MySQL官网上介绍的索引的叶子节点是双向链表。
关于索引结构的小结:
对于B-Tree而言,叶子节点是没有链接的,而B+Tree索引是单向链表,但是MySQL在B+Tree的基础之上加以改进,形成了双向链表,双向的好处是在处理> <,between and等'范围查询'语法时可以得心应手。
1、 只为用于搜索、排序或分组的列创建索引。
重点关注where语句后边的情况
2、 当列中不重复值的个数在总记录条数中的占比很大时,才为列建立索引。
例如手机号、用户ID、班级等,但是比如一张全校学生表,每条记录是一名学生,where语句是查询所有’某学校‘的学生,那么其实也不会提高性能。
3、 索引列的类型尽量小。
无论是主键还是索引列都尽量选择小的,如果很大则会占据很大的索引空间。
4、 可以只为索引列前缀创建索引,减少索引占用的存储空间。
alter table single_table add index idx_key1(key1(10))
5、 尽量使用覆盖索引进行查询,以避免回表操作带来的性能损耗。
select key1 from single_table order by key1
6、 为了尽可能的少的让聚簇索引发生页面分裂的情况,建议让主键自增。
7、 定位并删除表中的冗余和重复索引。
冗余索引:
单列索引:(字段1)
联合索引:(字段1 字段2)
重复索引:
在一个字段上添加了普通索引、唯一索引、主键等多个索引
其中常用的是:
possible_keys: 可能用到的索引
key: 实际使用的索引
rows:预估的需要读取的记录条数
案例1:
在建设互联网医院系统中,问诊单表当时量级23万左右,其中有一个business_id字符串字段,这个字段用来记录外部订单的ID,并且在该字段上也加了索引,但是'根据该ID查询详情'的SQL语句却总是时好时坏,性能不稳定,快则10ms,慢则2秒左右,SQL大体如下:
select 字段1、字段2、字段3 from nethp_diag where business_Id = ?
因为business_id是记录第三方系统的订单ID,为了兼容不同的第三方系统,因而设计成了字符串类型,但如果传入的是一个数字类型是无法使用索引的,因为MySQL只能将字符串转数字,而不能将数字转字符串,由于外部的ID有的是数字有的是字符串,因而导致索引一会可以走到,一会走不到,最终导致了性能的不稳定。
案例2:
在某次大促的当天,突然接到DBA运维的报警,说数据库突然流量激增,CPU也打到100%了,影响了部分线上功能和体验,遇到这种情况当时大部分人都比较紧张,下图为当时的数据库流量情况:
相关SQL语句:
select count(1)
from jdhe_medical_record
where status = 1 and is_test = #{isTest,jdbcType=INTEGER} and electric_medical_record_status in (2,3)
and patient_id = #{patientId,jdbcType=BIGINT}
and doctor_pin = #{doctorPin,jdbcType=VARCHAR}
and created >#{dateStart,jdbcType=TIMESTAMP};
当时的索引情况
当时的执行计划
其实在patientId和doctor_pin两个字段上是有索引的,但是由于线上情况的改变,导致test判断没有进入,这样的通用查询导致这两个字段没有设置上,进而导致了数据库扫描的量激增,对数据库产生了很大压力。
案例3:
2020年某日上午收到数据库CPU异常报警,对线上有一定的影响,后续检查数据库CPU情况如下,从7点51分开始,CPU从8%瞬间达到99.92%,丝毫没有给程序员留任何情面。
当时的SQL语句:
select rx_id, rx_create_time
from nethp_rx_info
where rx_status = 5
and status = 1
and rx_product_type = 0
and (parent_rx_id = 0 or parent_rx_id is null)
and business_type != 7
and vender_id = 8888
order by rx_create_time asc
limit 1;
当时的索引情况:
PRIMARY KEY (`id`),
UNIQUE KEY `uniq_rx_id` (`rx_id`),
KEY `idx_diag_id` (`diag_id`),
KEY `idx_doctor_pin` (`doctor_pin`) USING BTREE,
KEY `idx_rx_storeId` (`store_id`),
KEY `idx_parent_rx_id` (`parent_rx_id`) USING BTREE,
KEY `idx_rx_status` (`rx_status`) USING BTREE,
KEY `idx_doctor_status_type` (`doctor_pin`, `rx_status`, `rx_type`),
KEY `idx_business_store` (`business_type`, `store_id`),
KEY `idx_doctor_pin_patientid` (`patient_id`, `doctor_pin`) USING BTREE,
KEY `idx_rx_create_time` (`rx_create_time`)
当时这张表量级2000多万,而当这条慢SQL执行较少的时候,数据库的CPU也就下来了,恢复到了49.91%,基本可以恢复线上业务,从而表象就是线上间歇性的一会可以开方一会不可以,这条SQL当时总共执行了230次,当时的CPU情况也是忽高忽低,伴随这条SQL语句的执行情况,从而最终证明CPU的飙升是由于这条慢SQL。当线上业务逻辑复杂的时候,你很难第一时间知道到底是由于那条SQL引起的,这个就需要对业务非常熟悉,对SQL很熟悉,否则就会白白浪费大量的排查时间。
最后的排查结果:
在头天晚上的时候添加了一条索引rx_create_time,当时没事,但是第二天却出了事故。
加索引前后走的索引不同,一个是走的rx_status(处方审核状态)单列索引,一个是走的rx_create_time(处方提交事件)单列索引,这个就要回到业务,因为处方状态是个枚举,且枚举范围不到10个,也就说线上29,000,000的数据量也就是被分成了不到10份,rx_status=5的值是其中一份,因而通过这个索引就可以命中很多行,这是业务规则,再套用MySQL的特性,主要是以下几条:
1、没加新索引rx_create_time的时候,由于order by后边没有索引,就看where条件中是否有合适的索引,查询选择器选定rx_status这个单列索引,而rx_status=5这个条件下限制的数据行在索引中是连续,即使需要的rx_id不在索引中,再回主键聚簇索引也来得及,由于order by后边没有索引,所以走磁盘级别的排序filesort,高峰积压的时候处方就1万到2万,跑到了100ms,白天低谷的时候几百单也就20ms。
2、新加索引之后,就分两种情况:
2.1、加索引是在晚上,当前命中的行数比较少,由于当天晚上的时候待审核的处方确实很少,也就是rx_status=5的确实很少,查询优化器感觉反正没多少行,排序不重要,因而就还是选择rx_status索引。
2.2、第二天白天,待审核的处方数量很多了(rx_status=5的数据量多了),当时可以命中几万数据,如果当前命中的行数比较多,查询优化器就开始算成本,感觉排序的成本会更高,那就优先保排序吧,所以就选择rx_create_time这个字段,但是这个索引树上没有别的索引字段的信息,没办法,几乎每条数据都要回表,进而引发了灾难。