学习视频:PyTorch 神经网络基础【动手学深度学习v2】
官方笔记:深度学习计算
从编程的角度来看,块由类(class)表示。 它的任何子类都必须定义一个将其输入转换为输出的前向传播函数, 并且必须存储任何必需的参数。 注意,有些块不需要任何参数。 最后,为了计算梯度,块必须具有反向传播函数。在定义我们自己的块时,由于自动微分提供了一些后端实现,我们只需要考虑前向传播函数和必需的参数。
在构造自定义块之前,我们先回归一下多层感知机的代码,下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层, 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。
import torch
from torch import nn
from torch.nn import functional as F
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = torch.rand(2, 20)
net(X)
在这个例子中,我们通过实例化nn.Sequential
来构建我们的模型, 层的执行顺序是作为参数传递的。 简而言之,nn.Sequential
定义了一种特殊的Module
, 即在PyTorch中表示一个块的类, 它维护了一个由Module
组成的有序列表。 注意,两个全连接层都是Linear
类的实例, Linear
类本身就是Module
的子类。 另外,到目前为止,我们一直在通过net(X)
调用我们的模型来获得模型的输出。 这实际上是net.__call__(X)
的简写。 这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入
总结每个块必须提供的基本功能:
在下面的代码片段中,我们从零开始编写一个块。 它包含一个多层感知机,其具有256个隐藏单元的隐藏层和一个10维输出层。 注意,下面的MLP
类继承了表示块的类。 我们的实现只需要提供我们自己的构造函数(Python中的__init__
函数)和前向传播函数。
class MLP(nn.Module):
# 用模型参数声明层。这里,我们声明两个全连接的层
def __init__(self):
# 调用MLP的父类Module的构造函数来执行必要的初始化。
# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
super().__init__()
self.hidden = nn.Linear(20, 256) # 隐藏层
self.out = nn.Linear(256, 10) # 输出层
# 定义模型的前向传播,即如何根据输入X返回所需的模型输出
def forward(self, X):
# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
return self.out(F.relu(self.hidden(X)))
首先看一下前向传播函数,它以X
作为输入, 计算带有激活函数的隐藏表示,并输出其未规范化的输出值。
我们定制的__init__
函数通过super().__init__()
调用父类的__init__
函数, 省去了重复编写模版代码的痛苦。 然后,我们实例化两个全连接层, 分别为self.hidden
和self.out
。 注意,除非我们实现一个新的运算符, 否则我们不必担心反向传播函数或参数初始化, 系统将自动生成这些。
我们可以更仔细地看看Sequential
类是如何工作的, 回想一下Sequential
的设计是为了把其他模块串起来。 为了构建我们自己的简化的MySequential
, 我们只需要定义两个关键函数:
下面的MySequential
类提供了与默认Sequential
类相同的功能。
class MySequential(nn.Module):
def __init__(self, *args):
super().__init__()
for idx, module in enumerate(args):
# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
# 变量_modules中。_module的类型是OrderedDict
self._modules[str(idx)] = module
def forward(self, X):
# OrderedDict保证了按照成员添加的顺序遍历它们
for block in self._modules.values():
X = block(X)
return X
_modules
的主要优点是: 在模块的参数初始化过程中, 系统知道在_modules
字典中查找需要初始化参数的子块。
当MySequential
的前向传播函数被调用时, 每个添加的块都按照它们被添加的顺序执行。 现在可以使用我们的MySequential
类重新实现多层感知机。
net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)
Sequential
类使模型构造变得简单, 允许我们组合新的架构,而不必定义自己的类。 然而,并不是所有的架构都是简单的顺序架构。 当需要更强的灵活性时,我们需要定义自己的块。 例如,我们可能希望在前向传播函数中执行Python的控制流。 此外,我们可能希望执行任意的数学运算, 而不是简单地依赖预定义的神经网络层。
class FixedHiddenMLP(nn.Module):
def __init__(self):
super().__init__()
# 不计算梯度的随机权重参数。因此其在训练期间保持不变
self.rand_weight = torch.rand((20, 20), requires_grad=False)
self.linear = nn.Linear(20, 20)
def forward(self, X):
X = self.linear(X)
# 使用创建的常量参数以及relu和mm函数
X = F.relu(torch.mm(X, self.rand_weight) + 1)
# 复用全连接层。这相当于两个全连接层共享参数
X = self.linear(X)
# 控制流
while X.abs().sum() > 1:
X /= 2
return X.sum()
可以混合搭配各种组合块的方法。
class NestMLP(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
nn.Linear(64, 32), nn.ReLU())
self.linear = nn.Linear(32, 16)
def forward(self, X):
return self.linear(self.net(X))
chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)
有时我们希望提取参数,以便在其他环境中复用它们, 将模型保存下来,以便它可以在其他软件中执行, 或者为了获得科学的理解而进行检查。
下面看一个具有单隐藏层的多层感知机
import torch
from torch import nn
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)
我们从已有模型中访问参数。 当通过Sequential
类定义模型时, 我们可以通过索引来访问模型的任意层。 这就像模型是一个列表一样,每层的参数都在其属性中。
print(net[2].state_dict())
'''
OrderedDict([('weight', tensor([[ 0.3016, -0.1901, -0.1991, -0.1220, 0.1121, -0.1424, -0.3060, 0.3400]])), ('bias', tensor([-0.0291]))])
'''
输出的结果告诉我们一些重要的事情: 首先,这个全连接层包含两个参数,分别是该层的权重和偏置。 两者都存储为单精度浮点数(float32)。 注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。
注意,每个参数都表示为参数类的一个实例。 要对参数执行任何操作,首先我们需要访问底层的数值。 下面的代码从第二个全连接层(即第三个神经网络层)提取偏置, 提取后返回的是一个参数类实例,并进一步访问该参数的值。
print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
'''
Parameter containing:
tensor([-0.0291], requires_grad=True)
tensor([-0.0291])
'''
参数是复合的对象,包含值、梯度和额外信息。 这就是我们需要显式参数值的原因。 除了值之外,我们还可以访问每个参数的梯度。 在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。
net[2].weight.grad == None
'''
True
'''
当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。 当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂, 因为我们需要递归整个树来提取每个子块的参数, 下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层。
print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])
'''
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))
'''
这为我们提供了另一种访问网络参数的方式
net.state_dict()['2.bias'].data
如果我们将多个块相互嵌套,参数命名约定是如何工作的。 我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。
def block1():
return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
nn.Linear(8, 4), nn.ReLU())
def block2():
net = nn.Sequential()
for i in range(4):
# 在这里嵌套
net.add_module(f'block {i}', block1())
return net
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
设计了网络后,我们看看它是如何工作的。
print(rgnet)
'''
Sequential(
(0): Sequential(
(block 0): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
(block 1): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
(block 2): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
(block 3): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
)
(1): Linear(in_features=4, out_features=1, bias=True)
)
'''
因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。 下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。
rgnet[0][1][0].bias.data
深度学习框架提供默认随机初始化, 也允许我们创建自定义初始化方法, 满足我们通过其他规则实现初始化权重。
默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵, 这个范围是根据输入和输出维度计算出的。 PyTorch的nn.init
模块提供了多种预置初始化方法。
让我们首先调用内置的初始化器。 下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置参数设置为0。
def init_normal(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, mean=0, std=0.01)
nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
我们还可以将所有参数初始化为给定的常数,比如初始化为1。
def init_constant(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 1)
nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
我们还可以对某些块应用不同的初始化方法。 例如,下面我们使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。
def init_xavier(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
def init_42(m):
if type(m) == nn.Linear:
nn.init.constant_(m.weight, 42)
net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
def my_init(m):
if type(m) == nn.Linear:
print("Init", *[(name, param.shape)
for name, param in m.named_parameters()][0])
nn.init.uniform_(m.weight, -10, 10)
m.weight.data *= m.weight.data.abs() >= 5
net.apply(my_init)
net[0].weight[:2]
注意,我们始终可以直接设置参数。
net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]
有时我们希望在多个层间共享参数: 我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。
# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
shared, nn.ReLU(),
shared, nn.ReLU(),
nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])
这个例子表明第三个和第五个神经网络层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。 因此,如果我们改变其中一个参数,另一个参数也会改变。 这里有一个问题:当参数绑定时,梯度会发生什么情况? 答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层 (即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。
我们构造一个没有任何参数的自定义层,下面的CenteredLayer
类要从其输入中减去均值。 要构建它,我们只需继承基础层类并实现前向传播功能。
import torch
import torch.nn.functional as F
from torch import nn
class CenteredLayer(nn.Module):
def __init__(self):
super().__init__()
def forward(self, X):
return X - X.mean()
让我们向该层提供一些数据,验证它是否能按预期工作
layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))
现在,我们可以将层作为组件合并到更复杂的模型中
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
作为额外的健全性检查,我们可以在向该网络发送随机数据后,检查均值是否为0。 由于我们处理的是浮点数,因为存储精度的原因,我们仍然可能会看到一个非常小的非零数。
Y = net(torch.rand(4, 8))
Y.mean()
以上我们知道了如何定义简单的层,下面我们继续定义具有参数的层, 这些参数可以通过训练进行调整。 我们可以使用内置函数来创建参数,这些函数提供一些基本的管理功能。 比如管理访问、初始化、共享、保存和加载模型参数。 这样做的好处之一是:我们不需要为每个自定义层编写自定义的序列化程序。
现在,让我们实现自定义版本的全连接层。 回想一下,该层需要两个参数,一个用于表示权重,另一个用于表示偏置项。 在此实现中,我们使用修正线性单元作为激活函数。 该层需要输入参数:in_units
和units
,分别表示输入数和输出数
class MyLinear(nn.Module):
def __init__(self, in_units, units):
super().__init__()
self.weight = nn.Parameter(torch.randn(in_units, units))
self.bias = nn.Parameter(torch.randn(units,))
def forward(self, X):
linear = torch.matmul(X, self.weight.data) + self.bias.data
return F.relu(linear)
接下来,我们实例化MyLinear
类并访问其模型参数。
linear = MyLinear(5, 3)
linear.weight
可以使用自定义层直接执行前向传播计算
linear(torch.rand(2, 5))
们还可以使用自定义层构建模型,就像使用内置的全连接层一样使用自定义层。
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(torch.rand(2, 64))
对于单个张量,我们可以直接调用load
和save
函数分别读写它们。 这两个函数都要求我们提供一个名称,save
要求将要保存的变量作为输入。
import torch
from torch import nn
from torch.nn import functional as F
x = torch.arange(4)
torch.save(x, 'x-file')
我们现在可以将存储在文件中的数据读回内存。
x2 = torch.load('x-file')
x2
我们可以存储一个张量列表,然后把它们读回内存。
y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
(x2, y2)
我们甚至可以写入或读取从字符串映射到张量的字典。 当我们要读取或写入模型中的所有权重时,这很方便。
mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2
保存单个权重向量(或其他张量)确实有用, 但是如果我们想保存整个模型,并在以后加载它们, 单独保存每个向量则会变得很麻烦。 毕竟,我们可能有数百个参数散布在各处。 因此,深度学习框架提供了内置函数来保存和加载整个网络。 需要注意的一个重要细节是,这将保存模型的参数而不是保存整个模型。 例如,如果我们有一个3层多层感知机,我们需要单独指定架构。 因为模型本身可以包含任意代码,所以模型本身难以序列化。 因此,为了恢复模型,我们需要用代码生成架构, 然后从磁盘加载参数。 让我们从熟悉的多层感知机开始尝试一下。
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.hidden = nn.Linear(20, 256)
self.output = nn.Linear(256, 10)
def forward(self, x):
return self.output(F.relu(self.hidden(x)))
net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)
接下来,我们将模型的参数存储在一个叫做“mlp.params”的文件中。
torch.save(net.state_dict(), 'mlp.params')
为了恢复模型,我们实例化了原始多层感知机模型的一个备份。 这里我们不需要随机初始化模型参数,而是直接读取文件中存储的参数。
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()
'''
MLP(
(hidden): Linear(in_features=20, out_features=256, bias=True)
(output): Linear(in_features=256, out_features=10, bias=True)
)
'''
由于两个实例具有相同的模型参数,在输入相同的X
时, 两个实例的计算结果应该相同。 让我们来验证一下。
Y_clone = clone(X)
Y_clone == Y
'''
tensor([[True, True, True, True, True, True, True, True, True, True],
[True, True, True, True, True, True, True, True, True, True]])
'''
首先,确保至少安装了一个NVIDIA GPU,然后可以使用nvidia-smi
命令来查看显卡信息。
!nvidia-smi
在PyTorch中,每个数组都有一个设备(device), 我们通常将其称为环境(context)。 默认情况下,所有变量和相关的计算都分配给CPU。 有时环境可能是GPU。 当我们跨多个服务器部署作业时,事情会变得更加棘手。 通过智能地将数组分配给环境, 我们可以最大限度地减少在设备之间传输数据的时间。 例如,当在带有GPU的服务器上训练神经网络时, 我们通常希望模型的参数在GPU上。
我们可以指定用于存储和计算的设备,如CPU和GPU。 默认情况下,张量是在内存中创建的,然后使用CPU计算它。
在PyTorch中,CPU和GPU可以用torch.device('cpu')
和torch.device('cuda')
表示。 应该注意的是,cpu
设备意味着所有物理CPU和内存, 这意味着PyTorch的计算将尝试使用所有CPU核心。 然而,gpu
设备只代表一个卡和相应的显存。 如果有多个GPU,我们使用torch.device(f'cuda:{i}')
来表示第i块GPU(i从0开始),另外,cuda:0
和cuda
是等价的
import torch
from torch import nn
torch.device('cpu'), torch.device('cuda')
'''
(device(type='cpu'), device(type='cuda'))
'''
可以查询可用gpu的数量。
torch.cuda.device_count()
'''
1
'''
现在我们定义了两个方便的函数, 这两个函数允许我们在不存在所需所有GPU的情况下运行代码。
def try_gpu(i=0): #@save
"""如果存在,则返回gpu(i),否则返回cpu()"""
if torch.cuda.device_count() >= i + 1:
return torch.device(f'cuda:{i}')
return torch.device('cpu')
def try_all_gpus(): #@save
"""返回所有可用的GPU,如果没有GPU,则返回[cpu(),]"""
devices = [torch.device(f'cuda:{i}')
for i in range(torch.cuda.device_count())]
return devices if devices else [torch.device('cpu')]
try_gpu(), try_gpu(10), try_all_gpus()
'''
(device(type='cuda', index=0),
device(type='cpu'),
[device(type='cuda', index=0)])
'''
我们可以查询张量所在的设备。 默认情况下,张量是在CPU上创建的。
x = torch.tensor([1, 2, 3])
x.device
'''
device(type='cpu')
'''
需要注意的是,无论何时我们要对多个项进行操作, 它们都必须在同一个设备上。 例如,如果我们对两个张量求和, 我们需要确保两个张量都位于同一个设备上, 否则框架将不知道在哪里存储结果,甚至不知道在哪里执行计算。
有几种方法可以在GPU上存储张量。 例如,**我们可以在创建张量时指定存储设备。**接 下来,我们在第一个gpu
上创建张量变量X
。 在GPU上创建的张量只消耗这个GPU的显存。 我们可以使用nvidia-smi
命令查看显存使用情况。 一般来说,我们需要确保不创建超过GPU显存限制的数据。
X = torch.ones(2, 3, device=try_gpu())
X
'''
tensor([[1., 1., 1.],
[1., 1., 1.]], device='cuda:0')
'''
假设我们至少有两个GPU,下面的代码将在第二个GPU上创建一个随机张量。
Y = torch.rand(2, 3, device=try_gpu(1))
Y
'''
tensor([[0.3821, 0.5270, 0.4919],
[0.9391, 0.0660, 0.6468]], device='cuda:1')
'''
Z = X.cuda(1)
print(X)
print(Z)
'''
tensor([[1., 1., 1.],
[1., 1., 1.]], device='cuda:0')
tensor([[1., 1., 1.],
[1., 1., 1.]], device='cuda:1')
'''
现在数据在同一个GPU上(Z
和Y
都在),我们可以将它们相加。
Y + Z
'''
tensor([[1.3821, 1.5270, 1.4919],
[1.9391, 1.0660, 1.6468]], device='cuda:1')
'''
假设变量Z
已经存在于第二个GPU上。 如果我们还是调用Z.cuda(1)
会发生什么? 它将返回Z
,而不会复制并分配新内存。
Z.cuda(1) is Z
'''
True
'''
类似地,神经网络模型可以指定设备。 下面的代码将模型参数放在GPU上
net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())
当输入为GPU上的张量时,模型将在同一GPU上计算结果。
net(X)
'''
tensor([[-0.0605],
[-0.0605]], device='cuda:0', grad_fn=)
'''
让我们确认模型参数存储在同一个GPU上。
net[0].weight.data.device
'''
device(type='cuda', index=0)
'''