【动手学深度学习】--09.PyTorch神经网络基础

文章目录

  • PyTorch神经网络基础
    • 1.层和块
      • 1.1自定义块
      • 1.2顺序块
      • 1.3在前向传播函数中执行代码
    • 2.参数管理
      • 2.1参数访问
        • 2.1.1目标参数
        • 2.1.2一次性访问所有参数
        • 2.1.3从嵌套块收集参数
      • 2.2参数初始化
        • 2.2.1内置初始化
        • 2.2.2自定义初始化
      • 2.3参数绑定
    • 3.自定义层
      • 3.1不带参数的层
      • 3.2带参数的层
    • 4.读写文件
      • 4.1加载和保存张量
      • 4.2加载和保存模型参数
    • 5.GPU
      • 5.1计算设备
      • 5.2张量与GPU
        • 5.2.1存储在GPU上
        • 5.2.2复制
      • 5.3神经网络与GPU

PyTorch神经网络基础

学习视频:PyTorch 神经网络基础【动手学深度学习v2】

官方笔记:深度学习计算

1.层和块

【动手学深度学习】--09.PyTorch神经网络基础_第1张图片

从编程的角度来看,块由(class)表示。 它的任何子类都必须定义一个将其输入转换为输出的前向传播函数, 并且必须存储任何必需的参数。 注意,有些块不需要任何参数。 最后,为了计算梯度,块必须具有反向传播函数。在定义我们自己的块时,由于自动微分提供了一些后端实现,我们只需要考虑前向传播函数和必需的参数。

在构造自定义块之前,我们先回归一下多层感知机的代码,下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层, 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。

import torch
from torch import nn
from torch.nn import functional as F

net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))

X = torch.rand(2, 20)
net(X)

在这个例子中,我们通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的。 简而言之,nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类, 它维护了一个由Module组成的有序列表。 注意,两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。 另外,到目前为止,我们一直在通过net(X)调用我们的模型来获得模型的输出。 这实际上是net.__call__(X)的简写。 这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入

1.1自定义块

总结每个块必须提供的基本功能:

  1. 将输入数据作为其前向传播函数的参数。
  2. 通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。
  3. 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。
  4. 存储和访问前向传播计算所需的参数。
  5. 根据需要初始化模型参数。

在下面的代码片段中,我们从零开始编写一个块。 它包含一个多层感知机,其具有256个隐藏单元的隐藏层和一个10维输出层。 注意,下面的MLP类继承了表示块的类。 我们的实现只需要提供我们自己的构造函数(Python中的__init__函数)和前向传播函数。

class MLP(nn.Module):
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用MLP的父类Module的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256)  # 隐藏层
        self.out = nn.Linear(256, 10)  # 输出层

    # 定义模型的前向传播,即如何根据输入X返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))

首先看一下前向传播函数,它以X作为输入, 计算带有激活函数的隐藏表示,并输出其未规范化的输出值。

我们定制的__init__函数通过super().__init__() 调用父类的__init__函数, 省去了重复编写模版代码的痛苦。 然后,我们实例化两个全连接层, 分别为self.hiddenself.out。 注意,除非我们实现一个新的运算符, 否则我们不必担心反向传播函数或参数初始化, 系统将自动生成这些。

1.2顺序块

我们可以更仔细地看看Sequential类是如何工作的, 回想一下Sequential的设计是为了把其他模块串起来。 为了构建我们自己的简化的MySequential, 我们只需要定义两个关键函数:

  1. 一种将块逐个追加到列表中的函数;
  2. 一种前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。

下面的MySequential类提供了与默认Sequential类相同的功能。

class MySequential(nn.Module):
    def __init__(self, *args):
        super().__init__()
        for idx, module in enumerate(args):
            # 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
            # 变量_modules中。_module的类型是OrderedDict
            self._modules[str(idx)] = module

    def forward(self, X):
        # OrderedDict保证了按照成员添加的顺序遍历它们
        for block in self._modules.values():
            X = block(X)
        return X

_modules的主要优点是: 在模块的参数初始化过程中, 系统知道在_modules字典中查找需要初始化参数的子块。

MySequential的前向传播函数被调用时, 每个添加的块都按照它们被添加的顺序执行。 现在可以使用我们的MySequential类重新实现多层感知机。

net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)

1.3在前向传播函数中执行代码

Sequential类使模型构造变得简单, 允许我们组合新的架构,而不必定义自己的类。 然而,并不是所有的架构都是简单的顺序架构。 当需要更强的灵活性时,我们需要定义自己的块。 例如,我们可能希望在前向传播函数中执行Python的控制流。 此外,我们可能希望执行任意的数学运算, 而不是简单地依赖预定义的神经网络层。

class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        # 不计算梯度的随机权重参数。因此其在训练期间保持不变
        self.rand_weight = torch.rand((20, 20), requires_grad=False)
        self.linear = nn.Linear(20, 20)

    def forward(self, X):
        X = self.linear(X)
        # 使用创建的常量参数以及relu和mm函数
        X = F.relu(torch.mm(X, self.rand_weight) + 1)
        # 复用全连接层。这相当于两个全连接层共享参数
        X = self.linear(X)
        # 控制流
        while X.abs().sum() > 1:
            X /= 2
        return X.sum()

可以混合搭配各种组合块的方法。

class NestMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
                                 nn.Linear(64, 32), nn.ReLU())
        self.linear = nn.Linear(32, 16)

    def forward(self, X):
        return self.linear(self.net(X))

chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)

2.参数管理

有时我们希望提取参数,以便在其他环境中复用它们, 将模型保存下来,以便它可以在其他软件中执行, 或者为了获得科学的理解而进行检查。

下面看一个具有单隐藏层的多层感知机

import torch
from torch import nn

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)

2.1参数访问

我们从已有模型中访问参数。 当通过Sequential类定义模型时, 我们可以通过索引来访问模型的任意层。 这就像模型是一个列表一样,每层的参数都在其属性中。

print(net[2].state_dict())

'''
OrderedDict([('weight', tensor([[ 0.3016, -0.1901, -0.1991, -0.1220,  0.1121, -0.1424, -0.3060,  0.3400]])), ('bias', tensor([-0.0291]))])
'''

输出的结果告诉我们一些重要的事情: 首先,这个全连接层包含两个参数,分别是该层的权重和偏置。 两者都存储为单精度浮点数(float32)。 注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。

2.1.1目标参数

注意,每个参数都表示为参数类的一个实例。 要对参数执行任何操作,首先我们需要访问底层的数值。 下面的代码从第二个全连接层(即第三个神经网络层)提取偏置, 提取后返回的是一个参数类实例,并进一步访问该参数的值。

print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)

'''

Parameter containing:
tensor([-0.0291], requires_grad=True)
tensor([-0.0291])
'''

参数是复合的对象,包含值、梯度和额外信息。 这就是我们需要显式参数值的原因。 除了值之外,我们还可以访问每个参数的梯度。 在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。

net[2].weight.grad == None

'''
True
'''

2.1.2一次性访问所有参数

当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。 当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂, 因为我们需要递归整个树来提取每个子块的参数, 下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层

print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])

'''
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))
'''

这为我们提供了另一种访问网络参数的方式

net.state_dict()['2.bias'].data

2.1.3从嵌套块收集参数

如果我们将多个块相互嵌套,参数命名约定是如何工作的。 我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。

def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                         nn.Linear(8, 4), nn.ReLU())

def block2():
    net = nn.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add_module(f'block {i}', block1())
    return net

rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)

设计了网络后,我们看看它是如何工作的。

print(rgnet)

'''
Sequential(
  (0): Sequential(
    (block 0): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 1): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 2): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 3): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
  )
  (1): Linear(in_features=4, out_features=1, bias=True)
)
'''

因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。 下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。

rgnet[0][1][0].bias.data

2.2参数初始化

深度学习框架提供默认随机初始化, 也允许我们创建自定义初始化方法, 满足我们通过其他规则实现初始化权重。

默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵, 这个范围是根据输入和输出维度计算出的。 PyTorch的nn.init模块提供了多种预置初始化方法。

2.2.1内置初始化

让我们首先调用内置的初始化器。 下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置参数设置为0。

def init_normal(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, mean=0, std=0.01)
        nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]

我们还可以将所有参数初始化为给定的常数,比如初始化为1。

def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 1)
        nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]

我们还可以对某些块应用不同的初始化方法。 例如,下面我们使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。

def init_xavier(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)
def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)

2.2.2自定义初始化

【动手学深度学习】--09.PyTorch神经网络基础_第2张图片

def my_init(m):
    if type(m) == nn.Linear:
        print("Init", *[(name, param.shape)
                        for name, param in m.named_parameters()][0])
        nn.init.uniform_(m.weight, -10, 10)
        m.weight.data *= m.weight.data.abs() >= 5

net.apply(my_init)
net[0].weight[:2]

注意,我们始终可以直接设置参数。

net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]

2.3参数绑定

有时我们希望在多个层间共享参数: 我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                    shared, nn.ReLU(),
                    shared, nn.ReLU(),
                    nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])

这个例子表明第三个和第五个神经网络层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。 因此,如果我们改变其中一个参数,另一个参数也会改变。 这里有一个问题:当参数绑定时,梯度会发生什么情况? 答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层 (即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。

3.自定义层

3.1不带参数的层

我们构造一个没有任何参数的自定义层,下面的CenteredLayer类要从其输入中减去均值。 要构建它,我们只需继承基础层类并实现前向传播功能。

import torch
import torch.nn.functional as F
from torch import nn

class CenteredLayer(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, X):
        return X - X.mean()

让我们向该层提供一些数据,验证它是否能按预期工作

layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))

现在,我们可以将层作为组件合并到更复杂的模型中

net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())

作为额外的健全性检查,我们可以在向该网络发送随机数据后,检查均值是否为0。 由于我们处理的是浮点数,因为存储精度的原因,我们仍然可能会看到一个非常小的非零数。

Y = net(torch.rand(4, 8))
Y.mean()

3.2带参数的层

以上我们知道了如何定义简单的层,下面我们继续定义具有参数的层, 这些参数可以通过训练进行调整。 我们可以使用内置函数来创建参数,这些函数提供一些基本的管理功能。 比如管理访问、初始化、共享、保存和加载模型参数。 这样做的好处之一是:我们不需要为每个自定义层编写自定义的序列化程序。

现在,让我们实现自定义版本的全连接层。 回想一下,该层需要两个参数,一个用于表示权重,另一个用于表示偏置项。 在此实现中,我们使用修正线性单元作为激活函数。 该层需要输入参数:in_unitsunits,分别表示输入数和输出数

class MyLinear(nn.Module):
    def __init__(self, in_units, units):
        super().__init__()
        self.weight = nn.Parameter(torch.randn(in_units, units))
        self.bias = nn.Parameter(torch.randn(units,))
    def forward(self, X):
        linear = torch.matmul(X, self.weight.data) + self.bias.data
        return F.relu(linear)

接下来,我们实例化MyLinear类并访问其模型参数。

linear = MyLinear(5, 3)
linear.weight

可以使用自定义层直接执行前向传播计算

linear(torch.rand(2, 5))

们还可以使用自定义层构建模型,就像使用内置的全连接层一样使用自定义层。

net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(torch.rand(2, 64))

4.读写文件

4.1加载和保存张量

对于单个张量,我们可以直接调用loadsave函数分别读写它们。 这两个函数都要求我们提供一个名称,save要求将要保存的变量作为输入。

import torch
from torch import nn
from torch.nn import functional as F

x = torch.arange(4)
torch.save(x, 'x-file')

我们现在可以将存储在文件中的数据读回内存。

x2 = torch.load('x-file')
x2

我们可以存储一个张量列表,然后把它们读回内存。

y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
(x2, y2)

我们甚至可以写入或读取从字符串映射到张量的字典。 当我们要读取或写入模型中的所有权重时,这很方便。

mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2

4.2加载和保存模型参数

保存单个权重向量(或其他张量)确实有用, 但是如果我们想保存整个模型,并在以后加载它们, 单独保存每个向量则会变得很麻烦。 毕竟,我们可能有数百个参数散布在各处。 因此,深度学习框架提供了内置函数来保存和加载整个网络。 需要注意的一个重要细节是,这将保存模型的参数而不是保存整个模型。 例如,如果我们有一个3层多层感知机,我们需要单独指定架构。 因为模型本身可以包含任意代码,所以模型本身难以序列化。 因此,为了恢复模型,我们需要用代码生成架构, 然后从磁盘加载参数。 让我们从熟悉的多层感知机开始尝试一下。

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)

    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))

net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

接下来,我们将模型的参数存储在一个叫做“mlp.params”的文件中。

torch.save(net.state_dict(), 'mlp.params')

为了恢复模型,我们实例化了原始多层感知机模型的一个备份。 这里我们不需要随机初始化模型参数,而是直接读取文件中存储的参数。

clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()

'''
MLP(
  (hidden): Linear(in_features=20, out_features=256, bias=True)
  (output): Linear(in_features=256, out_features=10, bias=True)
)
'''

由于两个实例具有相同的模型参数,在输入相同的X时, 两个实例的计算结果应该相同。 让我们来验证一下。

Y_clone = clone(X)
Y_clone == Y

'''
tensor([[True, True, True, True, True, True, True, True, True, True],
        [True, True, True, True, True, True, True, True, True, True]])
'''

5.GPU

首先,确保至少安装了一个NVIDIA GPU,然后可以使用nvidia-smi命令来查看显卡信息。

!nvidia-smi

【动手学深度学习】--09.PyTorch神经网络基础_第3张图片

在PyTorch中,每个数组都有一个设备(device), 我们通常将其称为环境(context)。 默认情况下,所有变量和相关的计算都分配给CPU。 有时环境可能是GPU。 当我们跨多个服务器部署作业时,事情会变得更加棘手。 通过智能地将数组分配给环境, 我们可以最大限度地减少在设备之间传输数据的时间。 例如,当在带有GPU的服务器上训练神经网络时, 我们通常希望模型的参数在GPU上。

5.1计算设备

我们可以指定用于存储和计算的设备,如CPU和GPU。 默认情况下,张量是在内存中创建的,然后使用CPU计算它。

在PyTorch中,CPU和GPU可以用torch.device('cpu')torch.device('cuda')表示。 应该注意的是,cpu设备意味着所有物理CPU和内存, 这意味着PyTorch的计算将尝试使用所有CPU核心。 然而,gpu设备只代表一个卡和相应的显存。 如果有多个GPU,我们使用torch.device(f'cuda:{i}') 来表示第i块GPU(i从0开始),另外,cuda:0cuda是等价的

import torch
from torch import nn

torch.device('cpu'), torch.device('cuda')

'''
(device(type='cpu'), device(type='cuda'))
'''

可以查询可用gpu的数量。

torch.cuda.device_count()

'''
1
'''

现在我们定义了两个方便的函数, 这两个函数允许我们在不存在所需所有GPU的情况下运行代码。

def try_gpu(i=0):  #@save
    """如果存在,则返回gpu(i),否则返回cpu()"""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

def try_all_gpus():  #@save
    """返回所有可用的GPU,如果没有GPU,则返回[cpu(),]"""
    devices = [torch.device(f'cuda:{i}')
             for i in range(torch.cuda.device_count())]
    return devices if devices else [torch.device('cpu')]

try_gpu(), try_gpu(10), try_all_gpus()

'''
(device(type='cuda', index=0),
 device(type='cpu'),
 [device(type='cuda', index=0)])
'''

5.2张量与GPU

我们可以查询张量所在的设备。 默认情况下,张量是在CPU上创建的。

x = torch.tensor([1, 2, 3])
x.device

'''
device(type='cpu')
'''

需要注意的是,无论何时我们要对多个项进行操作, 它们都必须在同一个设备上。 例如,如果我们对两个张量求和, 我们需要确保两个张量都位于同一个设备上, 否则框架将不知道在哪里存储结果,甚至不知道在哪里执行计算。

5.2.1存储在GPU上

有几种方法可以在GPU上存储张量。 例如,**我们可以在创建张量时指定存储设备。**接 下来,我们在第一个gpu上创建张量变量X。 在GPU上创建的张量只消耗这个GPU的显存。 我们可以使用nvidia-smi命令查看显存使用情况。 一般来说,我们需要确保不创建超过GPU显存限制的数据。

X = torch.ones(2, 3, device=try_gpu())
X

'''
tensor([[1., 1., 1.],
        [1., 1., 1.]], device='cuda:0')
'''

假设我们至少有两个GPU,下面的代码将在第二个GPU上创建一个随机张量。

Y = torch.rand(2, 3, device=try_gpu(1))
Y

'''
tensor([[0.3821, 0.5270, 0.4919],
        [0.9391, 0.0660, 0.6468]], device='cuda:1')
'''

5.2.2复制

【动手学深度学习】--09.PyTorch神经网络基础_第4张图片

Z = X.cuda(1)
print(X)
print(Z)

'''
tensor([[1., 1., 1.],
        [1., 1., 1.]], device='cuda:0')
tensor([[1., 1., 1.],
        [1., 1., 1.]], device='cuda:1')
'''

现在数据在同一个GPU上(ZY都在),我们可以将它们相加。

Y + Z

'''
tensor([[1.3821, 1.5270, 1.4919],
        [1.9391, 1.0660, 1.6468]], device='cuda:1')
'''

假设变量Z已经存在于第二个GPU上。 如果我们还是调用Z.cuda(1)会发生什么? 它将返回Z,而不会复制并分配新内存。

Z.cuda(1) is Z

'''
True
'''

5.3神经网络与GPU

类似地,神经网络模型可以指定设备。 下面的代码将模型参数放在GPU上

net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())

当输入为GPU上的张量时,模型将在同一GPU上计算结果。

net(X)

'''
tensor([[-0.0605],
        [-0.0605]], device='cuda:0', grad_fn=)
'''

让我们确认模型参数存储在同一个GPU上。

net[0].weight.data.device

'''
device(type='cuda', index=0)
'''

你可能感兴趣的:(深度学习,深度学习,神经网络,人工智能)