hive底层原理 sql执行过程_[Hive]HiveSQL解析原理

Hive是基于Hadoop的一个数据仓库系统,在各大公司都有广泛的应用。美团数据仓库也是基于Hive搭建,每天执行近万次的Hive ETL计算流程,负责每天数百GB的数据存储和分析。Hive的稳定性和性能对我们的数据分析非常关键。

在几次升级Hive的过程中,我们遇到了一些大大小小的问题。通过向社区的 咨询和自己的努力,在解决这些问题的同时我们对Hive将SQL编译为MapReduce的过程有了比较深入的理解。对这一过程的理解不仅帮助我们解决了 一些Hive的bug,也有利于我们优化Hive SQL,提升我们对Hive的掌控力,同时有能力去定制一些需要的功能。

MapReduce实现基本SQL操作的原理

详细讲解SQL编译为MapReduce之前,我们先来看看MapReduce框架实现SQL基本操作的原理

Join的实现原理

select u.name, o.orderid from order o join user u on o.uid = u.uid;

在map的输出value中为不同表的数据打上tag标记,在reduce阶段根据tag判断数据来源。MapReduce的过程如下(这里只是说明最基本的Join的实现,还有其他的实现方式)

Group By的实现原理

select rank, isonline, count(*) from city group by rank, isonline;

将GroupBy的字段组合为map的输出key值,利用MapReduce的排序,在reduce阶段保存LastKey区分不同的key。MapReduce的过程如下(当然这里只是说明Reduce端的非Hash聚合过程)

Distinct的实现原理

select dealid, count(distinct uid) num from order group by dealid;

当只有一个distinct字段时,如果不考虑Map阶段的Hash GroupBy,只需要将GroupBy字段和Distinct字段组合为map输出key,利用mapreduce的排序,同时将GroupBy字段作 为reduce的key,在reduce阶段保存LastKey即可完成去重

如果有多个distinct字段呢,如下面的SQL

select dealid, count(distinct uid), count(distinct date) from order group by dealid;

实现方式有两种:

(1)如果仍然按照上面一个distinct字段的方法,即下图这种实现方式,无法跟据uid和date分别排序,也就无法通过LastKey去重,仍然需要在reduce阶段在内存中通过Hash去重

(2)第二种实现方式,可以对所有的distinct字段编号,每行数据生成n行数据,那么相同字段就会分别排序,这时只需要在reduce阶段记录LastKey即可去重。

这种实现方式很好的利用了MapReduce的排序,节省了reduce阶段去重的内存消耗,但是缺点是增加了shuffle的数据量。

需要注意的是,在生成reduce value时,除第一个distinct字段所在行需要保留value值,其余distinct数据行value字段均可为空。

SQL转化为MapReduce的过程

了解了MapReduce实现SQL基本操作之后,我们来看看Hive是如何将SQL转化为MapReduce任务的,整个编译过程分为六个阶段:

Antlr定义SQL的语法规则,完成SQL词法,语法解析,将SQL转化为抽象语法树AST Tree

遍历AST Tree,抽象出查询的基本组成单元QueryBlock

遍历QueryBlock,翻译为执行操作树OperatorTree

逻辑层优化器进行OperatorTree变换,合并不必要的ReduceSinkOperator,减少shuffle数据量

遍历OperatorTree,翻译为MapReduce任务

物理层优化器进行MapReduce任务的变换,生成最终的执行计划

下面分别对这六个阶段进行介绍

Phase1 SQL词法,语法解析

Antlr

Hive使用Antlr实现SQL的词法和语法解析。Antlr是一种语言识别的工具,可以用来构造领域语言。

这里不详细介绍Antlr,只需要了解使用Antlr构造特定的语言只需要编写一个语法文件,定义词法和语法替换规则即可,Antlr完成了词法分析、语法分析、语义分析、中间代码生成的过程。

Hive中语法规则的定义文件在0.10版本以前是Hive.g一个文件,随着语法规则越来越复杂,由语法规则生成的Java解析类可能超过Java类文 件的最大上限,0.11版本将Hive.g拆成了5个文件,词法规则HiveLexer.g和语法规则的4个文件 SelectClauseParser.g,FromClauseParser.g,IdentifiersParser.g,HiveParser.g。

抽象语法树AST Tree

经过词法和语法解析后,如果需要对表达式做进一步的处理,使用 Antlr 的抽象语法树语法Abstract Syntax Tree,在语法分析的同时将输入语句转换成抽象语法树,后续在遍历语法树时完成进一步的处理。

下面的一段语法是Hive SQL中SelectStatement的语法规则,从中可以看出,SelectStatement包含select, from, where, groupby, having, orderby等子句。

(在下面的语法规则中,箭头表示对于原语句的改写,改写后会加入一些特殊词标示特定语法,比如TOK_QUERY标示一个查询块)

[SQL] 纯文本查看 复制代码

样例SQL

为了详细说明SQL翻译为MapReduce的过程,这里以一条简单的SQL为例,SQL中包含一个子查询,最终将数据写入到一张表中

[SQL] 纯文本查看 复制代码

SQL生成AST Tree

Antlr对Hive SQL解析的代码如下,HiveLexerX,HiveParser分别是Antlr对语法文件Hive.g编译后自动生成的词法解析和语法解析类,在这两个类中进行复杂的解析。

[SQL] 纯文本查看 复制代码

最终生成的AST Tree如下图右侧(使用Antlr Works生成,Antlr Works是Antlr提供的编写语法文件的编辑器),图中只是展开了骨架的几个节点,没有完全展开。

子查询1/2,分别对应右侧第1/2两个部分。

这里注意一下内层子查询也会生成一个TOK_DESTINATION节点。请看上面SelectStatement的语法规则,这个节点是在语法改写中特 意增加了的一个节点。原因是Hive中所有查询的数据均会保存在HDFS临时的文件中,无论是中间的子查询还是查询最终的结果,Insert语句最终会将 数据写入表所在的HDFS目录下。

详细来看,将内存子查询的from子句展开后,得到如下AST Tree,每个表生成一个TOK_TABREF节点,Join条件生成一个“=”节点。其他SQL部分类似,不一一详述。

 

Phase2 SQL基本组成单元QueryBlock

AST Tree仍然非常复杂,不够结构化,不方便直接翻译为MapReduce程序,AST Tree转化为QueryBlock就是将SQL进一部抽象和结构化。

QueryBlock

QueryBlock是一条SQL最基本的组成单元,包括三个部分:输入源,计算过程,输出。简单来讲一个QueryBlock就是一个子查询。

下图为Hive中QueryBlock相关对象的类图,解释图中几个重要的属性

QB#aliasToSubq(表示QB类的aliasToSubq属性)保存子查询的QB对象,aliasToSubq key值是子查询的别名

QB#qbp 即QBParseInfo保存一个基本SQL单元中的给个操作部分的AST Tree结构,QBParseInfo#nameToDest这个HashMap保存查询单元的输出,key的形式是inclause-i(由于Hive 支持Multi Insert语句,所以可能有多个输出),value是对应的ASTNode节点,即TOK_DESTINATION节点。类QBParseInfo其余 HashMap属性分别保存输出和各个操作的ASTNode节点的对应关系。

QBParseInfo#JoinExpr保存TOK_JOIN节点。QB#QBJoinTree是对Join语法树的结构化。

QB#qbm保存每个输入表的元信息,比如表在HDFS上的路径,保存表数据的文件格式等。

QBExpr这个对象是为了表示Union操作。

AST Tree生成QueryBlock

AST Tree生成QueryBlock的过程是一个递归的过程,先序遍历AST Tree,遇到不同的Token节点,保存到相应的属性中,主要包含以下几个过程

TOK_QUERY => 创建QB对象,循环递归子节点

TOK_FROM => 将表名语法部分保存到QB对象的TOK_INSERT => 循环递归子节点

TOK_DESTINATION => 将输出目标的语法部分保存在QBParseInfo对象的nameToDest属性中

TOK_SELECT => 分别将查询表达式的语法部分保存在destToAggregationExprs、TOK_WHERE => 将Where部分的语法保存在QBParseInfo对象的destToWhereExpr属性中

最终样例SQL生成两个QB对象,QB对象的关系如下,QB1是外层查询,QB2是子查询

QB1 \ QB2

Phase3 逻辑操作符Operator

Operator

Hive最终生成的MapReduce任务,Map阶段和Reduce阶段均由OperatorTree组成。逻辑操作符,就是在Map阶段或者Reduce阶段完成单一特定的操作。

基本的操作符包括TableScanOperator,SelectOperator,FilterOperator,JoinOperator,GroupByOperator,ReduceSinkOperator

从名字就能猜出各个操作符完成的功能,TableScanOperator从MapReduce框架的Map接口原始输入表的数据,控制扫描表的数据行数,标记是从原表中取数据。JoinOperator完成Join操作。FilterOperator完成过滤操作

ReduceSinkOperator将Map端的字段组合序列化为Reduce Key/value, Partition Key,只可能出现在Map阶段,同时也标志着Hive生成的MapReduce程序中Map阶段的结束。

Operator在Map Reduce阶段之间的数据传递都是一个流式的过程。每一个Operator对一行数据完成操作后之后将数据传递给childOperator计算。

Operator类的主要属性和方法如下

RowSchema表示Operator的输出字段

InputObjInspector outputObjInspector解析输入和输出字段

processOp接收父Operator传递的数据,forward将处理好的数据传递给子Operator处理

Hive每一行数据经过一个Operator处理之后,会对字段重新编号,colExprMap记录每个表达式经过当前Operator处理前后的名称对应关系,在下一个阶段逻辑优化阶段用来回溯字段名

由 于Hive的MapReduce程序是一个动态的程序,即不确定一个MapReduce Job会进行什么运算,可能是Join,也可能是GroupBy,所以Operator将所有运行时需要的参数保存在OperatorDesc 中,OperatorDesc在提交任务前序列化到HDFS上,在MapReduce任务执行前从HDFS读取并反序列化。Map阶段 OperatorTree在HDFS上的位置在Job.getConf(“hive.exec.plan”)

+ “/map.xml”

 

QueryBlock生成Operator Tree

QueryBlock生成Operator Tree就是遍历上一个过程中生成的QB和QBParseInfo对象的保存语法的属性,包含如下几个步骤:

QB#aliasToSubq => 有子查询,递归调用

QB#aliasToTabs => TableScanOperator

QBParseInfo#joinExpr => QBJoinTree => ReduceSinkOperator + JoinOperator

QBParseInfo#destToWhereExpr => FilterOperator

QBParseInfo#destToGroupby => ReduceSinkOperator + GroupByOperator

QBParseInfo#destToOrderby => ReduceSinkOperator + ExtractOperator

由于Join/GroupBy/OrderBy均需要在Reduce阶段完成,所以在生成相应操作的Operator之前都会先生成一个ReduceSinkOperator,将字段组合并序列化为Reduce Key/value, Partition Key

接下来详细分析样例SQL生成OperatorTree的过程

先序遍历上一个阶段生成的QB对象

首先根据子QueryBlock

[Plain Text] 纯文本查看 复制代码

先序遍历QBJoinTree,类QBJoinTree保存左右表的ASTNode和这个查询的别名,最终生成的查询树如下    base    /  \   p    du  /      \ c        p

前序遍历detail.usersequence_client和

图中 TS=TableScanOperator RS=ReduceSinkOperator JOIN=JoinOperator

生成中间表与dim.user的Join操作树

根据QB2 FilterOperator。此时QB2遍历完成。

下图中SelectOperator在某些场景下会根据一些条件判断是否需要解析字段。

图中 FIL= FilterOperator SEL= SelectOperator

根据QB1的QBParseInfo#destToGroupby生成ReduceSinkOperator + GroupByOperator

图中 GBY= GroupByOperator

GBY[12]是HASH聚合,即在内存中通过Hash进行聚合运算

最终都解析完后,会生成一个FileSinkOperator,将数据写入HDFS

图中FS=FileSinkOperator

Phase4 逻辑层优化器

大部分逻辑层优化器通过变换OperatorTree,合并操作符,达到减少MapReduce Job,减少shuffle数据量的目的。

② MapJoinProcessor

② GroupByOptimizer

① PredicatePushDown

ColumnPruner

名称

作用

② SimpleFetchOptimizer

优化没有GroupBy表达式的聚合查询

MapJoin,需要SQL中提供hint,0.11版本已不用

② BucketMapJoinOptimizer

BucketMapJoin

Map端聚合

① ReduceSinkDeDuplication

合并线性的OperatorTree中partition/sort key相同的reduce

谓词前置

① CorrelationOptimizer

利用查询中的相关性,合并有相关性的Job,HIVE-2206

字段剪枝

表格中①的优化器均是一个Job干尽可能多的事情/合并。②的都是减少shuffle数据量,甚至不做Reduce。

CorrelationOptimizer优化器非常复杂,都能利用查询中的相关性,合并有相关性的Job,参考 Hive Correlation Optimizer

对于样例SQL,有两个优化器对其进行优化。下面分别介绍这两个优化器的作用,并补充一个优化器ReduceSinkDeDuplication的作用

PredicatePushDown优化器

断言判断提前优化器将OperatorTree中的FilterOperator提前到TableScanOperator之后

NonBlockingOpDeDupProc优化器

 

ReduceSinkDeDuplication优化器

ReduceSinkDeDuplication可以合并线性相连的两个RS。实际上CorrelationOptimizer是 ReduceSinkDeDuplication的超集,能合并线性和非线性的操作RS,但是Hive先实现的 ReduceSinkDeDuplication

譬如下面这条SQL语句

[Python] 纯文本查看 复制代码

经过前面几个阶段之后,会生成如下的OperatorTree,两个Tree是相连的,这里没有画到一起

这时候遍历OperatorTree后能发现前前后两个RS输出的Key值和PartitionKey如下

parentRS

Key

PartitionKey

childRS

key

key

key,value

key,value

ReduceSinkDeDuplication优化器检测到:1. pRS Key完全包含cRS Key,且排序顺序一致;2. pRS PartitionKey完全包含cRS PartitionKey。符合优化条件,会对执行计划进行优化。

ReduceSinkDeDuplication将childRS和parentheRS与childRS之间的Operator删掉,保留的RS的Key为key,value字段,PartitionKey为key字段。合并后的OperatorTree如下:

Phase5 OperatorTree生成MapReduce Job的过程

OperatorTree转化为MapReduce Job的过程分为下面几个阶段

对输出表生成MoveTask

从OperatorTree的其中一个根节点向下深度优先遍历

ReduceSinkOperator标示Map/Reduce的界限,多个Job间的界限

遍历其他根节点,遇过碰到JoinOperator合并MapReduceTask

生成StatTask更新元数据

剪断Map与Reduce间的Operator的关系

对输出表生成MoveTask

由上一步OperatorTree只生成了一个FileSinkOperator,直接生成一个MoveTask,完成将最终生成的HDFS临时文件移动到目标表目录下

MoveTask[Stage-0] Move Operator

开始遍历

将OperatorTree中的所有根节点保存在一个toWalk的数组中,循环取出数组中的元素(省略QB1,未画出)

取出最后一个元素TS[p]放入栈 opStack{TS[p]}中

Rule #1 TS% 生成MapReduceTask对象,确定MapWork

发现栈中的元素符合下面规则R1(这里用python代码简单表示)

[Python] 纯文本查看 复制代码

生成一个MapReduceTask[Stage-1]对象的MapReduceTask[Stage-1]包含了以

Rule #2 TS%.*RS% 确定ReduceWork

继续遍历TS[p]的子Operator,将子Operator存入栈opStack中

当第一个RS进栈后,即栈opStack = {TS[p], FIL[18], RS[4]}时,就会满足下面的规则R2

[Python] 纯文本查看 复制代码

这时候在ReduceWork属性保存

 

Rule #3 RS%.*RS% 生成新MapReduceTask对象,切分MapReduceTask

继续遍历JOIN[5]的子Operator,将子Operator存入栈opStack中

当第二个RS放入栈时,即当栈

[Python] 纯文本查看 复制代码

这时候创建一个新的JOIN[5]和JOIN[5]生成一个子OperatorRS[6]生成一个MapReduceTask[Stage-2]对象的TS[20]的引用。

新生成的

继续遍历RS[6]的子Operator,将子Operator存入栈opStack中

同理生成

R4 FS% 连接MapReduceTask与MoveTask

最终将所有子Operator存入栈中之后,

[Python] 纯文本查看 复制代码

这时候将MapReduceTask[Stage-3]连接起来,并生成一个

 

合并Stage

此时并没有结束,还有两个根节点没有遍历。

将opStack栈清空,将toWalk的第二个元素加入栈。会发现MapReduceTask[Stage-5]

继续从opStack={TS[du],

RS[7]}时,满足规则R2 TS%.*RS%

此时将MapReduceTask[Stage-5]的Map

MapReduceWork>对象中发现,MapReduceTask[Stage-2]和

同理从最后一个根节点

切分Map Reduce阶段

最后一个阶段,将MapWork和ReduceWork中的OperatorTree以RS为界限剪开

OperatorTree生成MapReduceTask全貌

最终共生成3个MapReduceTask,如下图

Phase6 物理层优化器

这里不详细介绍每个优化器的原理,单独介绍一下MapJoin的优化器

SortMergeJoinResolver

CommonJoinResolver + MapJoinResolver

名称

作用

Vectorizer

HIVE-4160,将在0.13中发布

与bucket配合,类似于归并排序

SamplingOptimizer

并行order by优化器,在0.12中发布

MapJoin优化器

MapJoin原理

MapJoin简单说就是在Map阶段将小表读入内存,顺序扫描大表完成Join。

上图是Hive MapJoin的原理图,出自Facebook工程师Liyin Tang的一篇介绍Join优化的slice,从图中可以看出MapJoin分为两个阶段:

通过MapReduce Local Task,将小表读入内存,生成HashTableFiles上传至Distributed Cache中,这里会对HashTableFiles进行压缩。

MapReduce Job在Map阶段,每个Mapper从Distributed Cache读取HashTableFiles到内存中,顺序扫描大表,在Map阶段直接进行Join,将数据传递给下一个MapReduce任务。

如果Join的两张表一张表是临时表,就会生成一个ConditionalTask,在运行期间判断是否使用MapJoin

CommonJoinResolver优化器

CommonJoinResolver优化器就是将CommonJoin转化为MapJoin,转化过程如下

深度优先遍历Task Tree

找到JoinOperator,判断左右表数据量大小

对与小表 + 大表 => MapJoinTask,对于小/大表 + 中间表 => ConditionalTask

遍历上一个阶段生成的MapReduce任务,发现JOIN[8]中有一张表为临时表,先对Stage-2进行深度拷贝(由于需要保留原始执行计划为Backup

Plan,所以这里将执行计划拷贝了一份),生成一个MapJoinOperator替代JoinOperator,然后生成一个MapReduceLocalWork读取小表生成HashTableFiles上传至DistributedCache中。

MapReduceTask经过变换后的执行计划如下图所示

MapJoinResolver优化器

MapJoinResolver优化器遍历Task Tree,将所有有local work的MapReduceTask拆成两个Task

最终MapJoinResolver处理完之后,执行计划如下图所示

Hive SQL编译过程的设计

从上述整个SQL编译的过程,可以看出编译过程的设计有几个优点值得学习和借鉴

使用Antlr开源软件定义语法规则,大大简化了词法和语法的编译解析过程,仅仅需要维护一份语法文件即可。

整体思路很清晰,分阶段的设计使整个编译过程代码容易维护,使得后续各种优化器方便的以可插拔的方式开关,譬如Hive 0.13最新的特性Vectorization和对Tez引擎的支持都是可插拔的。

每个Operator只完成单一的功能,简化了整个MapReduce程序。

参考

你可能感兴趣的:(hive底层原理,sql执行过程)