- 目前主流图像分类模型的详细对比分析
@comefly
闲聊linux运维服务器
以下是目前主流图像分类模型的详细对比分析,结合性能、架构特点及应用场景进行整理:一、主流模型架构分类与定量对比模型名称架构类型核心特点ImageNetTop-1准确率参数量(百万)计算效率典型应用场景ResNetCNN残差连接解决梯度消失,支持超深网络(如ResNet-152)76.1%25.6中等通用分类、目标检测ViTTransformer将图像分割为patches,用标准Transforme
- 汽车加气站操作工分类有几种
学视线123
其他
2025年汽车加气站操作工分类及专业要求一、按能源类型分类CNG操作工•专业范围:20MPa高压气体操作•特殊要求:需掌握压缩机群控技术LNG操作工•专业范围:-162℃低温储罐管理•特殊要求:BOG再液化系统操作资质氢气操作工•专业范围:70MPa高压加氢•特殊要求:氢脆防护专项培训LPG操作工•专业范围:丙烷/丁烷混合气体•特殊要求:钢瓶残液处理认证二、按岗位职能分类加注操作岗•核心技能:标准
- 前端开发领域倾囊相授——含自己实验室制定的学习计划和技术引导与学习
编程星辰海
#前端学习
【裂缝中的光即是你】暗处挣扎的根,终会托起向阳的花;深谷盘旋的风,终将化作腾空的羽翼。别嫌伤口丑陋,那是光挤进生命的缝隙;别怨脚步太慢,蛰伏的岁月自有深意。你看石缝里的种子,裂骨之痛后才有破晓的新绿;你听深海的暗涌,无声积蓄才掀起滔天的浪脊。此刻的沉默不是妥协,是把叹息锻造成剑;偶尔的停驻不是认输,是让灵魂与远方重新校准。当孤独漫过肩头,请相信:你举着火把走过的夜路,正一寸寸点亮他人的黎明;你咬紧
- 【论文笔记ing】Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem
Booksort
online笔记论文论文阅读transformer深度学习
论文中使用一个PointerFormer模型编码器部分:可逆残差模型堆叠解码器部分:指针网络自回归对于一次任务而言,推理阶段:编码器部分:一次解码器部分:循环N次,直至任务结束在训练阶段,使用强化学习,对于一个N个节点的TSP实例,算法中会以不同的起点,跑N次,得到N个轨迹,以满足TSP的对称特性,表示这都是属于一个TSP问题的(真实)解然后会计算这样表示归一化奖励,得到一个advantage,然
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- FairyGUI 实现 Boss 双层血条动画
future1412
学习
涉及到一个问题的话先去了解前因后果,涉及到的UI框架,全部吃懂吃透。一:理解血条系统的组成1.boss血条一般包括:红色血条:表示当前血量,随伤害立即减少;白色血条(残影):慢慢减少,产生一种“缓冲”的受伤视觉效果;血条分段(如2条血表示不同阶段);血条消失/出现动画;血条附加信息:如Boss名字、阶段数、状态效果等。二:准备环境Unity+FairyGUI准备血条UI元素:使用两张图层叠加实现红
- 第0章:开篇词 - 嘿,别怕,AI应用开发没那么神!
嘿,各位未来的AI大神们,我是阿威。在敲下这行字的时候,我猜你可能正坐在你的HermanMiller或者宜家电竞椅上,屏幕上还留着VSCode的残影,脑子里可能还在回响着产品经理那句“这个需求很简单”。你可能是一个身经百战的Web后端,也可能是一个像素眼的前端大师,或者是一个在移动端AppStore里摸爬滚打多年的老兵。我们都一样,是代码世界的“手艺人”,是数字世界的“建筑师”。我们相信逻辑,我们
- Python训练营打卡 Day50
预训练模型+CBAM模块知识点回顾:resnet结构解析CBAM放置位置的思考针对预训练模型的训练策略差异化学习率三阶段微调预训练模型+CBAM模块知识点回顾ResNet结构解析残差块:ResNet的核心是残差块,它通过残差连接解决了深层网络的梯度消失问题。残差块允许梯度直接传播到后面的层,从而使得网络能够训练得更深。网络结构:ResNet由多个残差块组成,每个残差块包含两个或三个卷积层,以及一个
- 【图像超分】论文复现:密集残差链接Transformer!DRCT的Pytorch源码复现,跑通超分源码,获得指标、模型复杂度、结果可视化,核心模块拆解与源码对应,注释详细!
十小大
超分辨率重建(理论+实战科研+应用)pytorch深度学习超分辨率重建图像处理计算机视觉pythontransformer
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通DRCT源码,获得与论文一致的PSNR/SSIM、Params、超分可视化结果,修正论文中FLOPs的计
- 典型的几种神经网络
Victor Zhong
AI框架神经网络人工智能深度学习
骨干网络CNN(卷积神经网络)RNN(循环神经网络)三级目录CNN(卷积神经网络)包括输入层、隐藏层、输出层:输入层一般为一张图片(w,h,d),输入层数据一般要做归一化处理;隐藏层包含特有的卷积层(卷积核有权重系数)、池化层(没有权重系数)、全连接层,还有残差块?和Inception模块?。;输出层:RNN(循环神经网络)单向的RNN示意图:三级目录
- 普通卸载只是表面功夫,Geek卸载神器了解一下。
明京
windows
01前言在Windows上,很多人习惯通过:•【控制面板】→卸载程序•或【设置】→应用→卸载你以为点击“卸载”按钮,软件就永远消失了吗?❌事实是:•注册表项还在•残留配置文件没删•相关服务还在后台运行•系统启动依然加载“幽灵程序”这些就是系统卡顿、空间被吃掉的罪魁祸首02正文一、初识GeekGeekUninstaller是一款轻量级、免费但功能强大的Windows程序卸载工具,主打“强力卸载+无残
- pythonflow_MLflow系列1:MLflow入门教程(Python)
weixin_39872334
pythonflow
这篇教程展示了如何:训练一个线性回归模型将训练代码打包成一个可复用可复现的模型格式将模型部署成一个简单的HTTP服务用于进行预测这篇教程使用的数据来自UCI的红酒质量数据集,主要用于根据红酒的PH值,酸度,残糖量等指标来评估红酒的质量。我们会用到什么?安装MLflow和scikit-learn,推荐两种安装方式:安装MLflow及其依赖:pipinstallmlflow[extras]分别安装ML
- Python Day56
别勉.
python机器学习python开发语言
Task:1.假设检验基础知识a.原假设与备择假设b.P值、统计量、显著水平、置信区间2.白噪声a.白噪声的定义b.自相关性检验:ACF检验和Ljung-Box检验c.偏自相关性检验:PACF检验3.平稳性a.平稳性的定义b.单位根检验4.季节性检验a.ACF检验b.序列分解:趋势+季节性+残差记忆口诀:p越小,落在置信区间外,越拒绝原假设。1.假设检验基础知识a.原假设与备择假设原假设(Null
- 【题解】洛谷P1001 A+B Problem
炯炯目光
c++
写在前面第一篇博客,献给2020年的残夏。静听8月的热情与安宁,在竞赛中的时光如白驹过隙。也不惧未知的风雨,努力向着既往的通途。ACMACMACM的目标,希望能实现吧。同时,推荐一下我的个人博客,欢迎访问。https://www.cnblogs.com/jjmg/下面是页面编辑的测试。题目地址https://www.luogu.com.cn/problem/P1001题目描述输入两个整数a,ba,
- ResNet(Residual Network)
不想秃头的程序
神经网络语音识别人工智能深度学习网络残差网络神经网络
ResNet(ResidualNetwork)是深度学习中一种经典的卷积神经网络(CNN)架构,由微软研究院的KaimingHe等人在2015年提出。它通过引入残差连接(SkipConnection)解决了深度神经网络中的梯度消失问题,使得网络可以训练极深的模型(如上百层),并在图像分类、目标检测、语义分割等任务中取得了突破性成果。以下是ResNet的详细介绍:一、核心思想ResNet的核心创新是
- 【机器学习算法】XGBoost原理
一、基本内容基本内容:GBDT的基础上,在损失函数上加入树模型复杂度的正则项与GBDT一样,也是使用新的弱学习器拟合残差(当前模型负梯度,残差方向)GBDT损失函数Loss=∑i=1NL(yi,yit)Loss=\sum_{i=1}^{N}L(y_i,y_i^{t})Loss=i=1∑NL(yi,yit)XGboost损失函数Loss=∑i=1SL(yi,yit)+∑j=1NΩ(fj))Loss=
- 基于Transformer实现机器翻译
yyyyurina.
transformer机器翻译深度学习
目录一、前言1.1什么是Transformer?1.2Transfomer的基本结构1.2Transformer的重要组成部分1.2.1位置编码(PositionalEncode)1.2.2自注意力机制(Self-Attention)1.2.3多头注意力(Multi-HeadAttention)1.2.4位置感知前馈层(Position-wiseFFN)1.2.5残差连接与层归一化二、AutoDL
- XGBoost算法原理及Python实现
法号清水
算法python开发语言
一、概述 XGBoost是一种基于梯度提升框架的机器学习算法,它通过迭代地训练一系列决策树来构建模型。核心思想是通过不断地在已有模型的基础上,拟合负梯度方向的残差(真实值与预测值的差)来构建新的弱学习器,达到逐步优化模型的目的。 XGBoost在构建决策树时,利用了二阶导数信息。在损失函数的优化过程中,不仅考虑了一阶导数(梯度),还引入了二阶导数(海森矩阵),这使得算法能够更精确地找到损失函数
- 梯度增强与XGBoost算法解析
weixin_47233946
算法算法
##一、梯度增强(GradientBoosting)原理###1.1集成学习与Boosting集成学习通过结合多个弱模型提升整体性能,主要包括Bagging(如随机森林)和Boosting两类方法。**梯度增强**属于Boosting家族,核心思想是**串行训练模型,每一步修正前序模型的残差**,最终形成强预测器。###1.2算法核心流程1.**初始化基模型**:用常数(如目标变量均值)预测。2.
- 通义万相2.1技术深度解析
accurater
c++算法笔记人工智能神经网络深度学习
如果喜欢可以到我的主页订阅专栏哟(^U^)ノ~YO一、系统架构概览通义万相2.1是基于扩散模型的多模态生成系统,其核心架构包含以下模块:多模态编码器CLIPViT-L/14文本编码器(768维嵌入)改进型图像编码器(EfficientNet-B7+自注意力)扩散主干网络改进型U-Net架构(128层残差块)多尺度交叉注意力机制动态卷积核分配自适应噪声调度系统非线性噪声衰减算法分阶段训练策略分布式训
- 北斗导航 | 基于改进小龙虾优化算法的GPS接收机自主完好性监测算法研究
北斗猿
卫星导航算法matlab
详细介绍基于改进小龙虾优化算法(COA)的GPS接收机自主完好性监测算法的原理、公式和MATLAB实现。主要内容如下:RAIM基础原理与问题定义:介绍最小二乘残差法的数学模型,包括伪距观测方程、故障检测统计量和故障识别方法。改进小龙虾优化算法设计:详细说明COA的三种行为模式及其数学表述,以及三种改进策略(非线性温度更新、自适应视野调整、混合变异机制)。融合改进COA的RAIM算法:阐述种群初始化
- 机器学习15-XGBoost
吹风看太阳
机器学习机器人人工智能
XGBOOST学习笔记一、引言在机器学习的集成学习算法中,XGBoost(eXtremeGradientBoosting)凭借其高效性、可扩展性和卓越的性能,成为数据科学竞赛和工业界应用的热门选择。XGBoost本质上是一种基于梯度提升框架(GradientBoostingFramework)的机器学习算法,它通过不断拟合残差来构建多个弱学习器(通常是决策树),并将这些弱学习器进行累加,从而形成一
- 30天pytorch从入门到熟练(day1)
一、总体工作思路本项目采用“从零构建”的策略,系统性地开展了深度学习模型的开发与优化工作。其目标在于通过全流程自研方式,深入理解模型构建、训练优化、推理部署的关键技术环节。整体路径分为以下核心阶段:模型初步构建:以最简单的线性模型y=Ax+B为起点,快速搭建数据流通路;数据生成机制设计:构建基于正态分布的可控数据生成器,逐步增加数据复杂度;模型复杂度提升:在逐步提高神经网络深度与宽度的同时,引入残
- (02)Cartographer源码无死角解析-(72) 2D后端优化→OptimizationProblem2D-约束残差、landmark残差
江南才尽,年少无知!
机器人cartographerslam自动驾驶增强现实
讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解(02)Cartographer源码无死角解析-链接如下:(02)Cartographer源码无死角解析-(00)目录_最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/127350885文末正下方中心提供了本人联系方式,点击本人照片即可显示WX→
- FFmpeg 的算法体系
lianghu666
音视频硬件Linuxffmpeg算法linux
️一、FFmpeg核心算法体系与作用1.编解码算法编解码是FFmpeg的核心能力,通过libavcodec实现音视频的压缩与还原。视频编码算法帧间预测:通过运动估计(菱形搜索、全搜索法)减少时间冗余,支持P帧(前向预测)和B帧(双向预测)变换与量化:采用整数离散余弦变换(DCT)将空域信号转为频域,再通过量化舍弃高频信息(H.264/H.265使用)熵编码:对残差数据采用CABAC(上下文自适应二
- 【开源项目】免费且本地运行:快用 DeepEval 测测你的大模型接口有没有缩水
MarkGosling
开源项目语言模型python开源软件ai人工智能
作为一个整天鼓捣大语言模型应用的大学生,我经常遇到一个头疼事儿:做了个RAG管道、搞了个聊天机器人,或者搭了个代理工作流之后,怎么才能知道它到底好不好、靠不靠谱?都说提示工程重要,模型选择也关键,但优化了半天,该用哪个模型,哪个提示词效果真棒,哪个架构更稳定?凭感觉?靠肉眼对比几个输出?这也太不“极客”了!过去用第三方厂商的大模型接口,总有点不放心:万一它给我的模型是个“残血版”API呢?我们普通
- LM算法与TRF算法(含有在ICP配准情境下的两种算法对应代码)
小远披荆斩棘
三维点云工程算法实现算法
在ICP配准中,使用LM算法通常会遇到找到的对应点对数量不足的问题因为使用Levenberg-Marquardt(LM)算法进行最小二乘优化时,残差的数量小于变量的数量。实际应用:ICP配准过程:针对两个三维点云数据,两个点云上均有相互对应的3D关键点。我需要在每个点云上的每个关键点附近找到许多三维点(可以设置阈值范围),构成一个局部整体。对每个局部整体进行ICP配准。下面包含使用LM算法的ICP
- 江大白 | 目标检测YOLOv12算法来袭,更高性能、更快速度!(附论文及源码)
双木的木
深度学习拓展阅读CV-目标检测专栏YOLO人工智能计算机视觉python目标检测学习算法
本文来源公众号“江大白”,仅用于学术分享,侵权删,干货满满。原文链接:目标检测YOLOv12算法来袭,更高性能、更快速度!(附论文及源码)导读目标检测是CV领域最常用的算法应用,而Yolo是目标检测算法非常经典的算法模型,近日Yolov12算法正式开源,提出区域注意力模块,残差高效层聚合网络,性能更好,速度更快,希望对大家学习理解有帮助!论文:https://arxiv.org/abs/2502.
- 残差网络中相加后激活的深度解析
浩瀚之水_csdn
#目标分类(理论)网络
残差网络中相加后激活的深度解析在残差网络中,"相加后激活"(post-additionactivation)是ResNet原始设计的关键特征,这一设计选择背后蕴含了深刻的神经网络原理,对模型性能有着重要影响。核心设计原理图示为什么不在相加前激活?数学视角:残差学习原理原始残差块设计目标:y=F(x)+x当F(x)优化到0时,网络退化为恒等映射:y=0+x=x如果在相加前激活:y=ReLU(F(x)
- 深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(3)
引言前面的文章《深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(1)》和《深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(2)》有做了相应的裁剪说明和实践,但是只是对其中的一个层进行采集的,这篇文章是记录对ResNet18中所有的残差层进行采集的一个过程。当然,前面也提到第一层是没有进行裁剪的,原因可以自己翻看前面的原因,后面也会有提到。一、ResNet18模型结构
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu