- [C#]C#使用yolov8的目标检测tensorrt模型+bytetrack实现目标追踪
FL1623863129
深度学习c#YOLO目标检测
【测试通过环境】win10x64vs2019cuda11.7+cudnn8.8.0TensorRT-8.6.1.6opencvsharp==4.9.0.NETFramework4.7.2NVIDIAGeForceRTX2070Super版本和上述环境版本不一样的需要重新编译TensorRtExtern.dll,TensorRtExtern源码地址:TensorRT-CSharp-API/src/T
- 软考高级《系统架构设计师》知识点(五)
Ritchie里其
系统架构
计算机网络网络概述和模型计算机网络是计算机技术与通信技术相结合的产物,它实现了远程通信、远程信息处理和资源共享。计算机网络的功能:数据通信、资源共享、管理集中化、实现分布式处理、负载均衡。网络性能指标:速率、带宽(频带宽度或传送线路速率)、吞吐量、时延、往返时间、利用率。网络非性能指标:费用、质量、标准化、可靠性、可扩展性、可升级性、易管理性和可维护性。通信技术:计算机网络是利用通信技术将数据从一
- c#模拟鼠标点击左键
王焜棟琦
C#c#
c#模拟鼠标点击左键,这里调用的是windows系统函数,usingSystem;usingSystem.Collections.Generic;usingSystem.Linq;usingSystem.Runtime.InteropServices;usingSystem.Text;usingSystem.Threading.Tasks;namespaceWindowsFormsAppHalco
- 用AI提升电商平台的客户体验:从个性化推荐到智能客服
Echo_Wish
人工智能前沿技术人工智能
用AI提升电商平台的客户体验:从个性化推荐到智能客服随着电商行业的竞争日益激烈,如何在海量商品中脱颖而出,吸引和保持客户的关注,成为平台生存和发展的关键。而在这场竞争中,人工智能(AI)正在发挥着越来越重要的作用。AI不仅可以优化电商平台的后台操作,还能在前端提供更为个性化、智能化的客户体验,让消费者感受到前所未有的便捷与高效。本文将从个性化推荐、智能客服、智能搜索等方面,详细探讨如何通过AI技术
- python 学习曲线函数_如何使用学习曲线来诊断你的LSTM模型的行为?(附代码)...
weixin_39576066
python学习曲线函数
LSTM是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。在自然语言处理、语言识别等一系列的应用上都取得了很好的效果。《LongShortTermMemoryNetworkswithPython》是澳大利亚机器学习专家JasonBrownlee的著作,里面详细介绍了LSTM模型的原理和使用。该书总共分为十四个章节,具体如下:第一章:什么是LSTMs?第二章:怎么样训练
- PHP语法完全入门指南:从零开始掌握动态网页
生信天地
php开发语言
本文专为零基础新手设计,通过5000字详细讲解带你系统学习PHP语法。包含环境搭建、基础语法、实战案例,并附20+代码示例。阅读后你将能独立开发简单动态网页!一、PHP开发环境搭建(新手必看)1.1为什么需要搭建环境?PHP是服务器端脚本语言,需要运行在服务器环境中。推荐使用集成环境一键安装:Windows用户:下载PHPStudy(文献1)Mac用户:推荐MAMP通用选择:XAMPP(文献1)安
- thinkphp引入阿里云视频点播
瑆箫
php开发语言
1.需要用到的sdk文件:阿里云视频点播接口+php技术-PHP文档类资源-CSDN下载2.方法:将解压的压缩包放到extend文件夹下面3.可以写个公共方法放到common.php4.引入sdk文件:require_oncestr_replace('\\','/',EXTEND_PATH).'alivod/aliyun-php-sdk-core/Config.php';usevod\Reques
- 中建海龙科技住博会展现装配式建筑4.0新风貌
qingqingcloud
科技
6月27日,第二十一届中国国际住宅产业暨建筑工业化产品博览会在京盛大开幕,以“好房子、好生活、新科技、新动能”为核心,汇聚了智能建造、智慧家居等领域的最新成果。中建海龙科技作为行业领军者,亮相展会,引领装配式建筑4.0时代新风尚。展会现场,中建海龙科技精心打造模块化“好房子”全流程客户服务体验区,人们仿佛置身于汽车4S店,直观感受从房屋设计、生产、装配到售后的全程服务,体验前所未有的便捷性。住房和
- 【漫话机器学习系列】041.信息丢失(dropout)
IT古董
漫话机器学习系列专辑机器学习人工智能深度学习
信息丢失(Dropout)Dropout是一种广泛应用于神经网络训练中的正则化技术,旨在减少过拟合(overfitting),提高模型的泛化能力。虽然"信息丢失"(dropout)这个术语在某些情况下可能引起误解,指的并非是数据的丢失,而是训练过程中故意“丢弃”神经网络中的部分神经元。这种做法可以避免模型过于依赖于某些特定的神经元,从而提高模型在新数据上的表现。Dropout的工作原理在神经网络的
- 第二章:12.3 建立表现基准
望云山190
基准性能水平人工智能机器学习
背景介绍语音识别是一种常见的机器学习应用,用户通过语音输入代替键盘输入,系统需要将语音转换为文本。在这个过程中,算法的性能可以通过训练误差和交叉验证误差来评估。误差定义训练误差(Jtrain):指算法在训练数据集上无法正确转录的音频片段的百分比。在这个例子中,训练误差是10.8%,意味着算法在训练数据上犯了10.8%的错误。交叉验证误差(Jcv):指算法在未见过的数据(交叉验证集)上无法正确转录的
- Ai时代,搞钱的6种方法
大耳朵爱学习
人工智能AI大模型大模型产品经理自然语言处理深度学习语言模型
随着人工智能(Ai)技术的迅速发展,越来越多的人意识到它不仅是一种前沿科技,更是一种变革性力量,为我们打开了赚钱的新大门。无论你是创业者、自由职业者,还是打算给自己的业务注入新活力,利用Ai赚钱都是一种值得尝试的选择。本文将结合当前最热门的Ai工具,为你提供6种高效、实用的搞钱思路。——1——内容创作:用Ai做你的创意助手1.1自媒体内容创作利用Ai模型,你可以轻松撰写公众号文章、知乎回答、短视频
- 第二章:12.4 学习曲线
望云山190
深度学习机器学习人工智能
学习曲线的基本概念学习曲线是展示机器学习模型性能如何随着训练数据量增加而变化的图表。它们可以帮助我们理解模型在不同数据量下的表现,以及模型是否过拟合或欠拟合。二阶模型的学习曲线交叉验证错误(Jcv):这条绿色曲线表示模型在未见过的数据上的表现。它反映了模型的泛化能力,即模型对新数据的预测能力。训练错误(Jtrain):这条红色曲线表示模型在训练数据上的表现。它反映了模型对训练数据的拟合程度。学习曲
- 微信DeepSeek王炸组合
金枝玉叶9
程序员知识储备1程序员知识储备2vue.js
1.背景信息微信:腾讯旗下的超级社交应用,涵盖通讯、支付、小程序生态等,月活用户超10亿。DeepSeek:专注AGI(通用人工智能)的中国公司,核心产品包括大模型(如DeepSeek-R1、DeepSeek-Chat)、多模态技术及行业解决方案。“王炸组合”:通常指强强联合的顶级合作,可能暗示技术互补或场景融合。2.可能的合作方向AI功能嵌入微信生态:DeepSeek的大模型能力(如对话、搜索、
- 操作系统架构-什么是实模式?什么是保护模式?(超详细版)
Refulic.
操作系统bootstraplinux系统架构系统安全
本文不讨论技术细节,纯粹是为了方便读者理解实模式和保护模式的具体概念,并且对具体概念建立明确的边界意识。这些概念在笔者学习过程中一度难以理解,混淆不清。希望本文可以帮助到操作系统的初学者。什么是实模式模式是指CPU的运行环境,它决定了处理器如何执行指令、管理内存以及访问硬件资源。实模式(RealMode)是x86架构的一种处理器模式,也是最基础的运行模式。在了解实模式是怎么来的之前,我们需要简单回
- PyTorch中文/英文官方文档&教程资源
三千の世界
PythonDataAnalysisComputerSciencepytorch
PyTorch中文文档https://pytorch-cn.readthedocs.io/zh/latest/PyTorch英文文档https://pytorch.org/docs/stable/index.htmlPyTorch官方教程-PyTorch教程1.1.0文档https://pytorch.org/tutorials/
- 5、pod 详解 (kubernetes)
Sundayday47
k8skubernetes容器云原生harbor
pod详解(kubernetes)Pod的基础概念pause容器Pod的分类与创建自主式Pod控制器管理的Pod静态PodPod容器的分类基础容器(infrastructurecontainer)初始化容器(initcontainers)应用容器(Maincontainer)镜像拉取策略(imagePullPolicy)k8s部署harbor创建私有项目部署harbor仓库harbor登录凭据资源
- 机器学习相关基础
星辰瑞云
机器学习
1.预备知识人工智能:用人工的方法在机器(计算机)上实现的智能;或者说是人们使机器具有类似于人的智能。人工智能学科:人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。2.日常生活中的机器学习:①称为RGB(由红色,绿色,蓝色组成),这种是欠拟合欠拟合和过拟合区别:•欠拟合(Underfitting):模型在训练数据上表现不佳,无法很好地捕捉数据中的规律。通
- 部署私有KMS服务器,并设置自动激活Windows和office
网工格物
服务器windows运维
介绍vlmcsd是一个KMS激活服务器的模拟器,可以在WindowsServer之外的平台上部署自己的KMS服务器。它是一个开源项目,由Wind4开发,目前在Linux上运行(包括Android、FreeBSD、Solaris、Minix、MacOS、iOS和Windows等)Docker镜像地址:https://hub.docker.com/r/mogeko/vlmcsd此程序的单独地址:htt
- 树莓派通过手机热点,无线连接PC端电脑,进行远程操作
Epiphany_ZZW
树莓派智能手机
树莓派通过手机热点实现无线连接具有以下几点优势:1.该方式能够联网,方便在项目开发时下载一些数据包。2.该方式能够通过手机端查看树莓派IP地址(有些情况树莓派ip地址会发生改变)借鉴链接如下:树莓派的使用网线及无线连接方法及手机连接树莓派_opencv镜像具体操作方式如下:打开终端:pi@raspberrypi:~$sudonano/etc/wpa_supplicant/wpa_supplican
- 【DeepSeek】一文详解GRPO算法——为什么能减少大模型训练资源?
FF-Studio
DeepSeekR1算法
GRPO,一种新的强化学习方法,是DeepSeekR1使用到的训练方法。今天的这篇博客文章,笔者会从零开始,层层递进地为各位介绍一种在强化学习中极具实用价值的技术——GRPO(GroupRelativePolicyOptimization)。如果你是第一次听说这个概念,也不必慌张,笔者会带领你从最基础的强化学习背景知识讲起,一步步剖析其来龙去脉,然后再结合实例讲解GRPO在实际应用中的思路和操作示
- MobPush智能推送系统的用户行为分析:驱动精准运营的核心引擎
数据库
MobPush智能推送系统的用户行为分析:驱动精准运营的核心引擎在移动应用竞争白热化的今天,用户注意力成为最稀缺的资源。APP企业纷纷引入MobPush智能推送系统,其核心价值在于通过用户行为分析实现精准触达。这种技术不仅改变了传统"广撒网"式的推送策略,更成为用户留存和商业转化的关键武器。本文将从实践效果与典型案例维度,解析MobPush智能推送系统如何重构用户运营逻辑。实践效果:从经验驱动到数
- JVM调优篇
java
章四JVM调优介绍JVM调优内容,JVM调优是为了解决性能瓶颈、优化资源利用和提高系统吞吐量的重要手段。调优主要围绕内存管理、垃圾回收、线程并发和启动性能等方面展开调优目标响应时间:尽量降低延迟,减少GC停顿时间吞吐量:尽量提高系统处理能力,减少GC时间占总时间的比例内存使用:优化堆、栈等内存分配,避免内存泄漏和内存溢出基本流程明确调优目标:响应时间、吞吐量或内存占用收集基线数据:通过监控工具(如
- 《传统教培机构的痛点:数字化转型如何破局?》
数字化浪潮下的困境在当今时代,数字化浪潮正以前所未有的速度席卷全球,深刻地改变着人们的生活、工作和学习方式。这是一个数据爆炸的时代,数据成为了驱动社会发展的核心要素之一。据统计,全球每天产生的数据量高达数万亿字节,这些数据涵盖了人们生活的方方面面,从购物习惯到社交行为,从健康状况到学习偏好,都被数字化记录下来。[]()数字化时代的技术创新日新月异,人工智能、大数据、云计算、物联网等新兴技术不断涌现
- AIMv2:多模态自回归预训练的视觉新突破
人工智能
AIMv2:多模态自回归预训练的视觉新突破阅读时长:19分钟发布时间:2025-02-17近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】导言视觉模型在人工智能领域的地位愈发重要,从图像识别、目标检测到多模态理解,其应用场景不断拓展。在大规模数据集上进行预训练,能助力模型学习丰富的视觉特
- FastAPI:解锁高性能API开发的密钥,轻松构建现代Web服务
醉心编码
人工智能基础fastapi前端
FastAPI:解锁高性能API开发的密钥,轻松构建现代Web服务一、核心特点二、应用场景三、技术优势四、安装与基本用法五、社区与文档FastAPI是一个基于Python的现代、快速(高性能)的Web框架,专门用于构建APIs,特别是基于Python的RESTfulAPIs。它以其高性能、易用性和可扩展性而闻名,适合开发者、数据科学家和机器学习工程师等多种岗位使用。以下是对FastAPI的详细介绍
- AIGC与AICG的区别解析
倔强的小石头_
AIGC
目录一、AIGC(人工智能生成内容)(一)定义与内涵(二)核心技术与应用场景(三)优势与挑战二、AICG(计算机图形学中的人工智能)(一)定义与内涵(二)核心技术与应用场景(三)优势与挑战三、AIGC与AICG的区别(一)侧重点不同(二)应用领域不同(三)技术重点不同在当今快速发展的人工智能领域,新的概念和术语不断涌现。其中,AIGC和AICG这两个看似相近的术语引起了广泛的关注。尽管它们仅有字母
- AI 发展的第一驱动力:人才引领变革
倔强的小石头_
热点时事人工智能
在科技蓬勃发展的当下,AI成为了时代的焦点,然而其发展并非一帆风顺,究竟什么才是推动AI持续前行的关键力量呢?目录AI发展现状剖析期望与现实的落差落地困境根源人才:AI发展的核心动力编辑技术突破的引领者行业融合的推动者人才驱动下的AI多元赋能创新应用场景加速产业升级培育AI人才的战略路径教育体系革新企业人才战略AI发展现状剖析期望与现实的落差近年来,全球科技大厂纷纷将目光聚焦于人工智能领域,对其寄
- PyInstaller在Linux环境下的打包艺术
黑金IT
pythonlinux运维服务器
PyInstaller是一款强大的工具,能够将Python应用程序及其所有依赖项打包成独立的可执行文件,支持Windows、macOS和Linux等多个平台。在Linux环境下,PyInstaller打包的可执行文件具有独特的特点和优势。本文将详细介绍PyInstaller在Linux环境下的应用,包括安装、准备项目、打包过程、打包后的可执行文件、常见问题与解决方法、进阶技巧、案例分析以及总结与展
- 掌握AI Prompt的艺术:如何有效引导智能助手
黑金IT
langchain人工智能promptlangchainAI编程
开头叙述:在人工智能的世界里,Prompt(提示)是沟通人类意图与机器理解之间的桥梁。它不仅是一串简单的文字,而是一把钥匙,能够解锁AI模型的潜力,引导它们执行复杂的任务。本文将探讨Prompt的重要性,并展示如何通过精心设计的Prompt来提升AI助手的效率和准确性。无论是在聊天、会议总结还是日程管理中,正确的Prompt都能让AI助手成为你工作中的得力助手。让我们一起深入了解Prompt的力量
- Node.js RESTful API
大哥的打嗝
Node.jsrestfulnode.jsjson
RESTfulAPI是一种构建网络应用程序的架构风格,它遵循REST(RepresentationalStateTransfer)架构原则。在RESTfulAPI中,我们使用HTTP协议的标准方法(如GET、POST、PUT、DELETE)来操作资源。在Node.js中,我们可以使用Express框架来构建RESTfulAPI。首先,我们需要安装express模块,在终端执行npminstalle
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&