在说反射贴图之前,不得不说到材质
前面我们做了冯着色模型,但是他还有些缺点,就是现实中,金属和陶器会有明显的镜面高光,但是木制品几乎没有镜面高光,而我们那样做会将所有的物品通通附有镜面高光,很显然这不符合现实。
为了更加精准的控制,就引入了材质在learnOpenGL中我们能见到
#version 330 core
struct Material
{
vec3 ambient;
vec3 diffuse;
vec3 specular;
float shininess;
};
uniform Material material;
这样的结构体,它讲的在不同的反射下,物体反射的颜色。我觉得这样说不太恰当。因为:
void main()
{
// 环境光
vec3 ambient = lightColor * material.ambient;
// 漫反射光
vec3 norm = normalize(Normal);
vec3 lightDir = normalize(lightPos - FragPos);
float diff = max(dot(norm, lightDir), 0.0);
vec3 diffuse = lightColor * (diff * material.diffuse);
// 镜面高光
vec3 viewDir = normalize(viewPos - FragPos);
vec3 reflectDir = reflect(-lightDir, norm);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
vec3 specular = lightColor * (spec * material.specular);
vec3 result = ambient + diffuse + specular;
color = vec4(result, 1.0f);
}
从他给出的代码中我们更能看出,材质本来就是物体固有属性,是我们给他定义的。也就是我们给他每种反射的颜色,从我们赋予它开始,物体本来就是那种颜色了,只是与光的颜色相结合,显现出不同的颜色效果(变暗或者变亮,甚至和有色光结合变了颜色)。对于模型而言,我们其实没有必要给材质定义颜色,因为模型本就有纹理(这是通常情况,特殊情况不需要纹理的话就得换类了,作为学习还是可以玩一玩,可以来做一些色彩效果)。我们上一章用的纹理做的光照模型,其实隐隐约约用来材质。物体的颜色别我们换成了纹理的颜色。
使用材质的好处:
shininess指的是光照散射半径,也就是前面说的pow函数中的次方,原理已经讲过。
为了给模型比较正确的效果,比如learnOpenGL中带有金属镶边的木箱子,金属部分会有镜面反射而木头部分只有漫反射。因此出现了漫反射和镜面反射贴图来充当材质。
struct Material
{
sampler2D diffuse;//漫反射贴图
sampler2D specular;//镜面反射贴图
float shininess;//散射半径,越大光斑越小
};
这是我们只需给这个属性通过缓冲区发送过来。因为环境光其实和漫反射的材质颜色往往相同,因此直接使用漫反射就好了,不需要定义。
纹理解码:
因为QOpenGLTexture这个类不太支持一些特殊的图片格式,仅仅支持像png、jpg、bmp这样的因此我们需要下载解码库freeimage,这个库很强大能支持比如.tga这样的格式。
https://freeimage.sourceforge.io/download.html
vsc++目录链接后直接把.dll文件丢到.exe所在的目录就好了
我们写一个自己的纹理类。
Image.h
#ifndef IMAGE_H
#define IMAGE_H
#include
class Image:protected QOpenGLFunctions
{
public:
Image(QOpenGLContext *pContext=nullptr);
~Image();
void loadImage(const QString &filePath);
unsigned int getTextureID();
private:
void crateTexture(int width, int height, byte* pixels);
private:
unsigned int m_textureID;
};
#endif // IMAGE_H
Image.cpp
#include "Image.h"
#include "FreeImage/FreeImage.h"
Image::Image(QOpenGLContext *pContext):QOpenGLFunctions(pContext)
{
}
Image::~Image()
{
}
void Image::loadImage(const QString &filePath)
{
QByteArray byteFilePath = filePath.toLatin1();
FREE_IMAGE_FORMAT fifmt = FreeImage_GetFileType(byteFilePath.data()); //Get file type
if (fifmt == FIF_UNKNOWN)
{
fifmt = FreeImage_GetFIFFromFilename(byteFilePath.data());
if (fifmt == FIF_UNKNOWN)
return;
}
FIBITMAP *pDib = FreeImage_Load(fifmt, byteFilePath.data());
pDib = FreeImage_ConvertTo24Bits(pDib); //convert to 24 bits
int width = FreeImage_GetWidth(pDib); //get the width of texture
int height = FreeImage_GetHeight(pDib); //height
BYTE *pPixels = (BYTE*)FreeImage_GetBits(pDib); //pixels
if(!pPixels)
return;
crateTexture(width,height,pPixels);
FreeImage_Unload(pDib); //release the memory
}
unsigned int Image::getTextureID()
{
return m_textureID;
}
void Image::crateTexture(int width, int height, byte *pixels)
{
GLuint textureId;
glGenTextures(1,&textureId);
glBindTexture(GL_TEXTURE_2D,textureId);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D,0,GL_RGB,width,height,0,GL_BGR_EXT,GL_UNSIGNED_BYTE,pixels);
glGenerateMipmap(GL_TEXTURE_2D);//多行渐远纹理
glBindTexture(GL_TEXTURE_2D,0);
m_textureID=textureId;
}
Model.h
#pragma once
#include "assimp/Importer.hpp"
#include "assimp/scene.h"
#include "assimp/postprocess.h"
#include "MyMesh.h"
#include"iostream"
#include "Image.h"
using namespace std;
class Model
{
public:
/* 成员函数 */
Model();
~Model();
void draw(Camera camera);
void init(string path, QOpenGLShaderProgram* shaderProgram);
void setModelLocation(QVector3D location);
private:
///* 模型数据 */
vector meshes;
string directory;
QOpenGLShaderProgram* shaderProgram;
///* 私有成员函数 */
void loadModel(string path);
void processNode(aiNode* node, const aiScene* scene);
MyMesh* processMesh(aiMesh* mesh, const aiScene* scene);
vector loadMaterialTextures(aiMaterial* mat, aiTextureType type, string typeName);
};
Model.cpp
#include "stdafx.h"
#include "Model.h"
Model::Model(){
}
Model::~Model() {
meshes.clear();
}
void Model::init(string path, QOpenGLShaderProgram* shaderProgram) {
this->shaderProgram = shaderProgram;
loadModel(path);
}
void Model::setModelLocation(QVector3D location) {
for (GLuint i = 0; i < this->meshes.size(); i++)
{
this->meshes[i]->setLocation(location.x(), location.y(), location.z());
}
}
void Model::draw(Camera camera)
{
for (GLuint i = 0; i < this->meshes.size(); i++)
{
this->meshes[i]->draw(camera);
}
}
void Model::loadModel(string path)
{
Assimp::Importer import;
const aiScene* scene = import.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs);
if (!scene || scene->mFlags == AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode)
{
qDebug() << "ERROR::ASSIMP::" << import.GetErrorString() << endl;
return;
}
this->directory =path.substr(0, path.find_last_of('/'));
this->processNode(scene->mRootNode, scene);
}
void Model::processNode(aiNode* node, const aiScene* scene)
{
// 添加当前节点中的所有Mesh
//qDebug() << "mNumMeshes:"<mNumMeshes;
for (GLuint i = 0; i < node->mNumMeshes; i++)
{
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
this->meshes.push_back(this->processMesh(mesh, scene));
}
// 递归处理该节点的子孙节点
//qDebug() << "mNumChildren:" << node->mNumChildren;
for (GLuint i = 0; i < node->mNumChildren; i++)
{
this->processNode(node->mChildren[i], scene);
}
}
MyMesh* Model::processMesh(aiMesh* mesh, const aiScene* scene)
{
vector vertices;
vector indices;
vector textures;
//qDebug() << "mNumVertices:" << mesh->mNumVertices;
for (GLuint i = 0; i < mesh->mNumVertices; i++)
{
Vertex vertex;
// 处理顶点坐标、法线和纹理坐标
vertex.Position.setX(mesh->mVertices[i].x);
vertex.Position.setY(mesh->mVertices[i].y);
vertex.Position.setZ(mesh->mVertices[i].z);
vertex.Normal.setX(mesh->mNormals[i].x);
vertex.Normal.setY(mesh->mNormals[i].y);
vertex.Normal.setZ(mesh->mNormals[i].z);
if (mesh->mTextureCoords[0]) // Does the mesh contain texture coordinates?
{
vertex.TexCoords.setX(mesh->mTextureCoords[0][i].x);
vertex.TexCoords.setY(mesh->mTextureCoords[0][i].y);
}
else { vertex.TexCoords.setX(0.0);
vertex.TexCoords.setY(0.0);}
vertices.push_back(vertex);
}
// 处理顶点索引
//qDebug() << "mNumFaces:" << mesh->mNumFaces;
for (GLuint i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
for (GLuint j = 0; j < face.mNumIndices; j++)
{
indices.push_back(face.mIndices[j]);
}
}
//处理材质
if(mesh->mMaterialIndex >= 0)
{
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
vector diffuseMats = this->loadMaterialTextures(material,
aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMats.begin(), diffuseMats.end());//把区间[start,end]插入到迭代器的指定位置
vector specularMats = this->loadMaterialTextures(material,
aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMats.begin(), specularMats.end());
}
MyMesh* myMesh = new MyMesh( vertices, indices, textures);
myMesh->init(shaderProgram);
return myMesh;
}
vector Model::loadMaterialTextures(aiMaterial* mat, aiTextureType type, string typeName)
{
vector textures;
if (mat->GetTextureCount(type) == 0) {//没有纹理我们也创建一个空的,避免纹理不更新,被上次的覆盖。
cout<< typeName <<":no find texture"<GetTextureCount(type); i++)
{
aiString folderPath;
mat->GetTexture(type, i, &folderPath);
GLboolean skip = false;
for (GLuint j = 0; j < textures.size(); j++)
{
if (textures[j].fileName == folderPath.C_Str())
{
textures.push_back(textures[j]);
skip = true;
break;
}
}
if (!skip)
{ // 如果纹理没有被加载过,加载之
Texture texture;
string filePath = this->directory;
filePath += folderPath.C_Str();
Image image;
image.loadImage(filePath);
texture.id = image.getTextureID();
texture.type = typeName;
texture.fileName = folderPath.C_Str();
textures.push_back(texture);
}
}
return textures;
}
几乎没有修改就是把qstring改成string了因为OpenGL更多是支持string好一些。还有就是QOpenglTexture改成了我们的图像解码类Image。
MyMesh.h
#pragma once
#include"vector"
#include "MyShader.h"
#include"Camera.h"
#include"iostream"
using namespace std;
struct Vertex
{
QVector3D Position;
QVector3D Normal;
QVector2D TexCoords;
};
struct Texture {
GLint id;
string type;
string fileName;
};
class MyMesh : protected QOpenGLFunctions_4_3_Core
{
public:
vector vertices;//顶点属性向量
vectorindices;//索引向量
vectortextures;//纹理属性向量
MyMesh(vector vertices, vector indices, vector texture);
void init(QOpenGLShaderProgram* shaderProgram);
void draw(Camera camera);
void setLocation(float x,float y,float z);
private:
float locationX=0.0f, locationY=0.0f, locationZ=-7.0f;
QOpenGLShaderProgram* shaderProgram;
QOpenGLVertexArrayObject vao;
QOpenGLBuffer vbo,ebo;
GLuint vPosition,normal,uv, model_loc,view_loc, cameraPos_loc;
};
MyMesh.cpp
#include "stdafx.h"
#include "MyMesh.h"
MyMesh::MyMesh(vector vertices, vector indices, vector textures): ebo(QOpenGLBuffer::IndexBuffer)
{
this->vertices = vertices;
this->indices = indices;
this->textures = textures;
}
void MyMesh::init(QOpenGLShaderProgram* shaderProgram)
{
initializeOpenGLFunctions();
this->shaderProgram = shaderProgram;
shaderProgram->bind();
vao.create();
vbo.create();
ebo.create();
vao.bind();
vbo.bind();
vbo.setUsagePattern(QOpenGLBuffer::StaticDraw);
vbo.allocate(&vertices[0], this->vertices.size() * sizeof(Vertex));
// 设置顶点坐标指针
vPosition = shaderProgram->attributeLocation("vPosition");
shaderProgram->setAttributeBuffer(vPosition, GL_FLOAT, 0, 3, sizeof(Vertex));
glEnableVertexAttribArray(vPosition);
// 设置法线指针
normal= shaderProgram->attributeLocation("normal");
shaderProgram->setAttributeBuffer("normal", GL_FLOAT, offsetof(Vertex, Normal), 3, sizeof(Vertex));//shader变量索引,参数类型,偏移量,元素大小,步长
glEnableVertexAttribArray(normal);
// 设置顶点的纹理坐标
uv = shaderProgram->attributeLocation("uv");
shaderProgram->setAttributeBuffer(uv, GL_FLOAT, offsetof(Vertex, TexCoords), 2, sizeof(Vertex));
glEnableVertexAttribArray(uv);
ebo.bind();
ebo.setUsagePattern(QOpenGLBuffer::StaticDraw);
ebo.allocate(&this->indices[0], this->indices.size() * sizeof(GLuint));
vao.release();
ebo.release();
vbo.release();
model_loc = shaderProgram->uniformLocation("model");
view_loc = shaderProgram->uniformLocation("view");
cameraPos_loc = shaderProgram->uniformLocation("cameraPos");
shaderProgram->setUniformValue("material.shininess", 32.0f);
shaderProgram->release();
vertices.clear();
}
void MyMesh::draw(Camera camera) {
shaderProgram->bind();
for (GLuint i = 0; i < this->textures.size(); i++)
{
string name = this->textures[i].type;
if (name == "texture_diffuse")
name = "diffuse";
else if (name == "texture_specular")
name = "specular";
string s = "material." + name;
const char* uniformName = s.c_str();
glActiveTexture(GL_TEXTURE0 + this->textures[i].id); // 在绑定纹理前需要激活适当的纹理单元
glBindTexture(GL_TEXTURE_2D, this->textures[i].id);
shaderProgram->setUniformValue(uniformName, this->textures[i].id);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, 0);
}
//构建视图矩阵
QMatrix4x4 rotat;
rotat.rotate(90.0,QVector3D(-1.0,0.0,0.0));
QMatrix4x4 m;
m.translate(locationX, locationY, locationZ);
m = m * rotat;
shaderProgram->setUniformValue(model_loc, m);
QMatrix4x4 v;
v.lookAt(QVector3D(camera.location.x, camera.location.y, camera.location.z),
QVector3D(camera.viewPoint.x, camera.viewPoint.y, camera.viewPoint.z),
QVector3D(camera.worldY.x, camera.worldY.y, camera.worldY.z));
shaderProgram->setUniformValue(view_loc, v);
shaderProgram->setUniformValue(cameraPos_loc, QVector3D(camera.location.x, camera.location.y, camera.location.z));
vao.bind();
glDrawElements(GL_TRIANGLES, this->indices.size(), GL_UNSIGNED_INT,this->indices[0]);
vao.release();
shaderProgram->release();
}
void MyMesh::setLocation(float x, float y, float z) {
locationX = x;
locationY = y;
locationZ = z;
}
主要就是增加了for循环去把这些贴图发送到结构体中
最后就是shader
shaderModel.fs
#version 430
struct Material
{
sampler2D diffuse;
sampler2D specular;
float shininess;
};
uniform Material material;
out vec4 color;
uniform vec3 cameraPos;
in vec2 texcoord;
in vec3 Normal;
in vec3 worldPos;
void main(void)
{
float ambientFactor=0.2;
float diffuseFactor = 1.0f;
float specularFactor = 0.5f;
vec3 lightColor=vec3(1.0,1.0,1.0);
vec3 lightPos=vec3(0.0,0.0,5.0);
vec3 diffuseColor=vec3(texture(material.diffuse,texcoord));
vec3 ambient=ambientFactor*lightColor*diffuseColor;
vec3 normol=normalize(Normal);
vec3 lightDir = normalize(lightPos - worldPos);
float diffuseStringth = max(dot(normol, lightDir), 0.0);
vec3 diffuse =diffuseFactor* diffuseStringth *lightColor*diffuseColor;
vec3 specularColor=vec3(texture(material.specular,texcoord));
vec3 viewDir = normalize(cameraPos - worldPos);
vec3 reflectDir = reflect(-lightDir, normol);
float specularStringth = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
vec3 specular = specularFactor * specularStringth*lightColor*specularColor;
color= vec4(ambient + diffuse+specular,1.0);
}
效果图:
这里网上下的模型法线没有镜面反射材质,因此结合光照效果不太好。如果材质比较全效果会好很多。再加上我们还没学光源,我们前面一直用的是点光源。
目录
VSC++2019+QT+OpenGL
QT+OpenGL一之绘制立方体(三角形图元)
QT+OpenGL二之纹理贴图
QT+OpenGL三之矩阵简解
QT+OpenGL四之相机的移动和旋转
QT+OpenGL五之绘制不同的模型(vao,vbo机制)
QT+OpenGL六之天空盒
QT+OpenGL七之使用EBO
QT+OPenGL八之模型准备
QT+OPenGL九之模型解码
QT+OPenGL十之光照模型
QT+OPenGL十一之漫反射和镜面反射贴图
QT+OPenGL十二之定向光
QT+OPenGL十三之真正的点光源和聚光灯
QT+OPenGL十四之多光源混合的问题
QT+OPenGL十五之深度缓冲区
QT+OPenGL十六之模板缓冲区
QT+OPenGL十七帧缓冲区(离屏渲染)
QT+OPenGL十八抗锯齿
QT+OPenGL十九镜面反射效率调整
QT+OPenGL二十Gamma校正