初学编程C++之最小生成树(kruskal算法)

代码示例:

#ifndef NODE_H
#define NODE_H
class Node
{
public:
	Node(char data=0);
	char m_cData;
	bool m_bIsVisited;
};
#endif

#include"Node.h"
Node::Node(char data)
{
	m_cData=data;
	m_bIsVisited=false;
}

#ifndef EDGE_H
#define EDGE_H
class Edge
{
public:
	Edge(int nodeIndexA=0,int nodeIndexB=0,int weightValue=0);
	int m_iNodeIndexA;
	int m_iNodeIndexB;
	int m_iWeightValue;
	bool m_bSelected;
};
#endif

#include"Edge.h"

Edge::Edge(int nodeIndexA,int nodeIndexB,int weightValue)
{
	m_iNodeIndexA=nodeIndexA;
	m_iNodeIndexB=nodeIndexB;
	m_iWeightValue=weightValue;
	m_bSelected=false;
}

#ifndef CMAP_H
#define CMAP_H
#include
using namespace std;
#include"Node.h"
#include"Edge.h"
class CMap
{
public:
	CMap(int capacity);
	~CMap();
	bool addNode(Node*pNode);//向图中加入顶点(结点)
	void resetNode();//重置顶点
	bool setValueToMatrixForDirectedGraph(int row,int col,int val=1);//为有向图设置邻接矩阵
	bool setValueToMatrixForUndirectedGraph(int row,int col,int val=1);//为无向图设置邻接矩阵
	void printMatrix();//打印临接矩阵
	void depthFirstTraverse(int nodeIndex);//深度优先遍历
	void breadthFirstTraverse(int nodeIndex);//广度优先遍历
	void primTree(int nodeIndex);//普里姆算法生成树
	void kruskalTree();//克鲁斯卡尔算法生成树
	
private:
	bool getValueFromMatrix(int row,int col,int &val);//从矩阵中获取权值
	void breadthFirstTraverseImpl(vector<int>preVec);//广度优先遍历实现函数
	int getMinEdge(vector<Edge>edgeVec);
	bool isInSet(vector<int>nodeSet,int target);//判断顶点是否在集合中
	void mergeNodeSet(vector<int> &nodeSetA,vector<int> nodeSetB);//合并两个点集合
	
private:
	int m_iCapacity;//图中最多可以容纳的定点数
	int m_iNodeCount;//已经添加的顶点(结点)个数
	Node*m_pNodeArray;//用来存放的数组
	int *m_pMatrix;//用来存放邻接矩阵
	Edge*m_pEdge;
};
#endif

#include"CMap.h"
#include
#include
using namespace std;
CMap::CMap(int capacity)
{
     m_iCapacity=capacity;
	 m_iNodeCount=0;
	 m_pNodeArray=new Node[m_iCapacity];
	 m_pMatrix=new int[m_iCapacity*m_iCapacity];
	 //memset(m_pMatrix,0,m_iCapacity*m_iCapacity*sizeof(int));
	 m_pEdge=new Edge[m_iCapacity-1];
	 for(int i=0;i<m_iCapacity*m_iCapacity;i++)
	 {
		 m_pMatrix[i]=0;
	 }
}
CMap::~CMap()
{
	delete []m_pNodeArray;
	m_pNodeArray=NULL;
	delete []m_pMatrix;
	m_pMatrix=NULL;
	delete []m_pEdge;
	m_pEdge=NULL;
}
bool CMap::addNode(Node*pNode)
{
	if(pNode==NULL)
	{
		return false;
	}
	m_pNodeArray[m_iNodeCount].m_cData= pNode->m_cData;
	m_iNodeCount++;
	return true;
}
void CMap::resetNode ()
{
	for(int i=0;i<m_iNodeCount;i++)
	{
		m_pNodeArray[i].m_bIsVisited=false;
	}
}
bool CMap::setValueToMatrixForDirectedGraph(int row,int col,int val) //有向图
{
	if(row<0||row>=m_iCapacity)
	{
		return false;
	}
	if(col<0||col>=m_iCapacity)
	{
		return false;
	}
	m_pMatrix[row*m_iCapacity+col]=val;
	return true;
}
bool CMap::setValueToMatrixForUndirectedGraph(int row,int col,int val) //无向图
{
	if(row<0||row>=m_iCapacity)
	{
		return false;
	}
	if(col<0||col>=m_iCapacity)
	{
		return false;
	}
	m_pMatrix[row*m_iCapacity+col]=val;
	m_pMatrix[col*m_iCapacity+row]=val;
	return true;
}
void CMap::printMatrix()
{
	for(int i=0;i<m_iCapacity;i++)
	{
		for(int k=0;k<m_iCapacity;k++)
		{
			cout<< m_pMatrix[i*m_iCapacity+k]<<" ";//row
		}
		cout<<endl;
	}
}
void CMap::depthFirstTraverse(int nodeIndex)
{
	int value=0;
	cout<<m_pNodeArray[nodeIndex].m_cData<<" ";
	m_pNodeArray[nodeIndex].m_bIsVisited=true;

	for(int i=0;i<m_iCapacity;i++)
	{
		getValueFromMatrix(nodeIndex,i,value);
		if(value==1)
		{
			if(m_pNodeArray[i].m_bIsVisited==true)
			{
				continue;
			}
			else
			{
				depthFirstTraverse(i);
			}
		}
		else
		{
			continue;
		}
	}
}
bool CMap::getValueFromMatrix(int row,int col,int &val) 
{
	if(row<0||row>=m_iCapacity)
	{
		return false;
	}
	if(col<0||col>=m_iCapacity)
	{
		return false;
	}
	val=m_pMatrix[row*m_iCapacity+col];
	return true;
}
void CMap::breadthFirstTraverse(int nodeIndex) 
{
	cout<<m_pNodeArray[nodeIndex].m_cData<<" ";
	m_pNodeArray[nodeIndex].m_bIsVisited=true;

	vector<int>curVec;
	curVec.push_back(nodeIndex);

	breadthFirstTraverseImpl(curVec);
}
void CMap::breadthFirstTraverseImpl(vector<int>preVec) 
{
	int value=0;
	vector<int>curVec;
	for(int j=0;j<(int)preVec.size();j++)
	{
		for(int i=0;i<m_iCapacity;i++)
		{
			getValueFromMatrix(preVec[j],i,value);
			if(value!=0)
			{
				if(m_pNodeArray[i].m_bIsVisited)
				{
					continue;
				}
				else
				{
					cout<<m_pNodeArray[i].m_cData<<" ";
					m_pNodeArray[i].m_bIsVisited=true;

					curVec.push_back(i);
				}
			}

		}
	}
	if(curVec.size()==0)
	{
		return;
	}
	else
	{
		breadthFirstTraverseImpl(curVec);
	}
}
void CMap::primTree(int nodeIndex)
{
	int value=0;
	int edgeCount=0;
	vector<int>nodeVec;
	vector<Edge>edgeVec;
	cout<<m_pNodeArray[nodeIndex].m_cData<<endl;
	m_pNodeArray[nodeIndex].m_bIsVisited=true;


	nodeVec.push_back(nodeIndex);
	//所有可选边放入集合中
	while(edgeCount<m_iCapacity-1)
	{
		int temp=nodeVec.back();
		for(int i=0;i<m_iCapacity;i++)
		{
			getValueFromMatrix(temp,i,value);
			if(value!=0)
			{
				if(m_pNodeArray[i].m_bIsVisited)
				{
					continue;
				}
				else
				{
					Edge edge(temp,i,value);
					edgeVec.push_back(edge);
				}
			}
		}
		//从可选边中选出最小边
		int edgeIndex= getMinEdge(edgeVec);
		edgeVec[edgeIndex].m_bSelected=true;
		cout<<edgeVec[edgeIndex].m_iNodeIndexA<<"--" <<edgeVec[edgeIndex].m_iNodeIndexB<<"--- ";
		cout<<edgeVec[edgeIndex].m_iWeightValue<<endl;
		m_pEdge[edgeCount]=edgeVec[edgeIndex];
		edgeCount++;

		int nextNodeIndex=edgeVec[edgeIndex].m_iNodeIndexB;
		nodeVec.push_back(nextNodeIndex);
		m_pNodeArray[nextNodeIndex].m_bIsVisited=true;
		cout<<m_pNodeArray[nextNodeIndex].m_cData<<endl;
	}
}
int CMap::getMinEdge(vector<Edge>edgeVec)
{
	int minWeight=0;
	int edgeIndex=0;
	int i=0;
	for(;i<(int)edgeVec.size();i++)
	{
		if(!edgeVec[i].m_bSelected)
		{
			minWeight=edgeVec[i].m_iWeightValue;
			edgeIndex=i;
			break;
		}
	}
	if(minWeight==0)
	{
		return -1;
	}
	for(;i<(int)edgeVec.size();i++)
	{
		if(edgeVec[i].m_bSelected)
		{
			continue;
		}
		else
		{
			if(minWeight>edgeVec[i].m_iWeightValue)
			{
				minWeight=edgeVec[i].m_iWeightValue;
				edgeIndex=i;
			}
		}
	}
	return edgeIndex;
}
void CMap::kruskalTree()
{
	
	int value=0;
	int edgeCount=0;
	//定义存放结点集合的数组
	vector<vector<int>>nodeSets;
	//第一步:取出所有边
	vector<Edge>edgeVec;
	for(int i=0;i<m_iCapacity;i++)
	{
		for(int j=i+1;j<m_iCapacity;j++)
		{
			getValueFromMatrix(i,j,value);
			if(value!=0)
			{
				Edge edge(i,j,value);
				edgeVec.push_back(edge);
			}
		}
	}
	//第二部:从所选边中取出组成最小生成树的边
	//1、找到算法结束条件
	while(edgeCount<m_iCapacity-1)
	{
	    //2、从边结合中找到最小边
		int minEdgeIndex=getMinEdge(edgeVec);
		edgeVec[minEdgeIndex].m_bSelected=true;
	    //3、找出最小边链接的点
		int nodeAIndex=edgeVec[minEdgeIndex].m_iNodeIndexA;
		int nodeBIndex=edgeVec[minEdgeIndex].m_iNodeIndexB;

	    //4、找出点所在的集合
		bool nodeAIsInSet=false;
		bool nodeBIsInSet=false;
		int nodeAInSetLabel=-1;
		int nodeBInSetLabel=-1;
		for(int i=0;i<(int)nodeSets.size();i++)
		{
			nodeAIsInSet=isInSet(nodeSets[i],nodeAIndex);
			if(nodeAIsInSet)
			{
				nodeAInSetLabel=i;
			}
		}
		for(int i=0;i<(int)nodeSets.size();i++)
		{
			nodeBIsInSet=isInSet(nodeSets[i],nodeBIndex);
			if(nodeBIsInSet)
			{
				nodeBInSetLabel=i;
			}
		}
	    //5、根据点所在集合不同做出不同处理
		if(nodeAInSetLabel==-1&&nodeBInSetLabel==-1)
		{
			vector<int>vec;
			vec.push_back(nodeAIndex);
			vec.push_back(nodeBIndex);
			nodeSets.push_back(vec);
		}
		else if(nodeAInSetLabel==-1&& nodeBInSetLabel!=-1)
		{
			nodeSets[nodeBInSetLabel].push_back(nodeAIndex);
		}
		else if(nodeBInSetLabel==-1&& nodeAInSetLabel!=-1)
		{
			nodeSets[nodeAInSetLabel].push_back(nodeBIndex);
		}
		else if(nodeBInSetLabel!=-1&& nodeAInSetLabel!=-1&&nodeAInSetLabel!=nodeBInSetLabel)
		{
			mergeNodeSet(nodeSets[nodeAInSetLabel],nodeSets[nodeBInSetLabel]);
			for(int k=nodeBInSetLabel;k<(int)nodeSets.size()-1;k++)
			{
				nodeSets[k]=nodeSets[k+1];
			}
		}
		else if(nodeBInSetLabel!=-1&& nodeAInSetLabel!=-1&&nodeAInSetLabel==nodeBInSetLabel)
		{
			continue;
		}
		m_pEdge[edgeCount]=edgeVec[minEdgeIndex];
		edgeCount++;
		cout<<edgeVec[minEdgeIndex].m_iNodeIndexA<<"--"<<edgeVec[minEdgeIndex].m_iNodeIndexB<<"--";
		cout<<edgeVec[minEdgeIndex].m_iWeightValue<<endl;
		
	}
	
}
bool CMap::isInSet(vector<int>nodeSet,int target)
{
	for(int i=0;i<(int)nodeSet.size();i++)
	{
		if(nodeSet[i]==target)
		{
			return true;
		}
	}
	return false;
}
void CMap::mergeNodeSet(vector<int> &nodeSetA,vector<int> nodeSetB)
{
	for(int i=0;i<(int)nodeSetB.size();i++)
	{
		nodeSetA.push_back(nodeSetB[i]);
	}
}

#include
#include
#include"CMap.h"
using namespace std;
/*
  最小生成树kruskal(克鲁斯卡尔)算法
         
		   A
		/  |  \
       B---F---E
		\ / \ /
	     C---D
顶点(结点)
	A B C D E F  
    0 1 2 3 4 5 
权值部分:
	A-B 6 A-E 5 A-F 1
	B-C 3 B-F 2
	C-F 8 C-D 7
	D-F 4 D-E 2
	E-F 9
  */
int main(void)
{
	CMap*pMap=new CMap(6);
	Node*pNodeA=new Node('A');
	Node*pNodeB=new Node('B');
	Node*pNodeC=new Node('C');
	Node*pNodeD=new Node('D');
	Node*pNodeE=new Node('E');
	Node*pNodeF=new Node('F');
	
	pMap->addNode(pNodeA);
	pMap->addNode(pNodeB);
	pMap->addNode(pNodeC);
	pMap->addNode(pNodeD);
	pMap->addNode(pNodeE);
	pMap->addNode(pNodeF);


	pMap->setValueToMatrixForUndirectedGraph(0,1,6);
	pMap->setValueToMatrixForUndirectedGraph(0,4,5);
	pMap->setValueToMatrixForUndirectedGraph(0,5,1);
	pMap->setValueToMatrixForUndirectedGraph(1,2,3);
	pMap->setValueToMatrixForUndirectedGraph(1,5,2);
	pMap->setValueToMatrixForUndirectedGraph(2,5,8);
	pMap->setValueToMatrixForUndirectedGraph(2,3,7);
	pMap->setValueToMatrixForUndirectedGraph(3,5,4);
	pMap->setValueToMatrixForUndirectedGraph(3,4,2);
	pMap->setValueToMatrixForUndirectedGraph(4,5,9);
	
	pMap->kruskalTree();
	
	system("pause");
	return 0;
}

打印结果:
初学编程C++之最小生成树(kruskal算法)_第1张图片

你可能感兴趣的:(c++)