在多线程环境下,经常会设有临界区
, 我们这个时候只希望同时只能有一个线程进入临界区
执行,可以利用操作系统的原子操作来构建互斥锁
,这种方式简单高效,但是却无法处理一些复杂的情况,例如:
为了解决上述问题,在操作系统的内部会为锁构建一个等待队列
, 用于之后的唤醒,防止其其一直空转。操作系统级别的锁会锁住整个线程,并且锁的抢占也会发生上下文切换。
在Go语言中,拥有比线程更加轻量的协程,并且也在协程的基础之上实现了更加轻量级的互斥锁,用法示例如下:
var count int64 = 0
var m sync.Mutex
func main() {
go add()
go add()
}
func add() {
m.Lock()
count++
m.Unlock()
}
Go语言的互斥锁使用sync/atomic包中的原子操作来构建自旋锁
,其实说白了就是CAS
(还不知道的小伙伴可以去了解一下此算法的原理),示例代码如下:
var count int64 = 0
var flag int64 = 0
func main() {
go add()
go add()
}
func add() {
for {
// 尝试将flag设置成新值 1
if atomic.CompareAndSwapInt64(&flag, 0, 1) {
count++
// 将flag还原成旧值 0
atomic.StoreInt64(&flag, 0)
}
}
}
上面的例子展示了CompareAndSwap
方法,其实atomic包下还有AddInt64
方法,可以实现原子性的加法操作。
互斥锁的源码位于src/sync/mutex.go
中,下面将通过源码来对互斥锁的原理进行解释
Lock方法
// Lock locks m.
// If the lock is already in use, the calling goroutine
// blocks until the mutex is available.
// 翻译:如果互斥锁锁已经被使用,调用此方法的goroutine会阻塞,直到互斥锁可用为止。
func (m *Mutex) Lock() {
// Fast path: grab unlocked mutex.
// 快速路径
if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
if race.Enabled {
race.Acquire(unsafe.Pointer(m))
}
return
}
// Slow path (outlined so that the fast path can be inlined)
// 慢路径
m.lockSlow()
}
通过上述代码不难看出,调用Lock
方法时,会先尝试快速路径,也就是一次CAS
操作,如果成功了就会直接返回,不会阻塞。如果没有成功,说明当前的互斥锁正在被使用,接着便会进入lockSlow
方法。
lockSlow方法
func (m *Mutex) lockSlow() {
var waitStartTime int64
starving := false
awoke := false
iter := 0
old := m.state
for {
// Don't spin in starvation mode, ownership is handed off to waiters
// so we won't be able to acquire the mutex anyway.
// 在正常模式下(非饥饿模式),如果可以自旋,则会继续自旋下去
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
// Active spinning makes sense.
// Try to set mutexWoken flag to inform Unlock
// to not wake other blocked goroutines.
if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
awoke = true
}
// 第一阶段:自旋(空转一定时间)
runtime_doSpin()
iter++
old = m.state
continue
}
new := old
// Don't try to acquire starving mutex, new arriving goroutines must queue.
// 饥饿模式下不会尝试获取锁,而是直接加入到等待队列中
if old&mutexStarving == 0 {
new |= mutexLocked
}
if old&(mutexLocked|mutexStarving) != 0 {
new += 1 << mutexWaiterShift
}
// The current goroutine switches mutex to starvation mode.
// But if the mutex is currently unlocked, don't do the switch.
// Unlock expects that starving mutex has waiters, which will not
// be true in this case.
// 切换至饥饿模式,如果此时互斥锁已经解锁,则不切换
if starving && old&mutexLocked != 0 {
new |= mutexStarving
}
if awoke {
// The goroutine has been woken from sleep,
// so we need to reset the flag in either case.
if new&mutexWoken == 0 {
throw("sync: inconsistent mutex state")
}
new &^= mutexWoken
}
if atomic.CompareAndSwapInt32(&m.state, old, new) {
if old&(mutexLocked|mutexStarving) == 0 {
break // locked the mutex with CAS
}
// If we were already waiting before, queue at the front of the queue.
// 如果之前就在等,则加到等待队列的头部
queueLifo := waitStartTime != 0
// 计时(防止一个协程长时间占有互斥锁)
if waitStartTime == 0 {
waitStartTime = runtime_nanotime()
}
// 第二阶段:通过信号量进行控制
runtime_SemacquireMutex(&m.sema, queueLifo, 1)
// runtime_nanotime()-waitStartTime > starvationThresholdNs 表示不能占有独占锁超过1ms
// 长时间未获取到锁,进入饥饿模式
starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
old = m.state
if old&mutexStarving != 0 {
// If this goroutine was woken and mutex is in starvation mode,
// ownership was handed off to us but mutex is in somewhat
// inconsistent state: mutexLocked is not set and we are still
// accounted as waiter. Fix that.
if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
throw("sync: inconsistent mutex state")
}
delta := int32(mutexLocked - 1<<mutexWaiterShift)
if !starving || old>>mutexWaiterShift == 1 {
// Exit starvation mode.
// Critical to do it here and consider wait time.
// Starvation mode is so inefficient, that two goroutines
// can go lock-step infinitely once they switch mutex
// to starvation mode.
// 退出饥饿模式
delta -= mutexStarving
}
atomic.AddInt32(&m.state, delta)
break
}
awoke = true
iter = 0
} else {
old = m.state
}
}
if race.Enabled {
race.Acquire(unsafe.Pointer(m))
}
}
lockSlow方法内部其实是一个for循环,for循环的第一个if其实就是自旋,其中,runtime_canSpin
方法的源码如下:
const(
...
active_spin = 4
...
)
func sync_runtime_canSpin(i int) bool {
// sync.Mutex is cooperative, so we are conservative with spinning.
// Spin only few times and only if running on a multicore machine and
// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
// As opposed to runtime mutex we don't do passive spinning here,
// because there can be work on global runq or on other Ps.
if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
return false
}
if p := getg().m.p.ptr(); !runqempty(p) {
return false
}
return true
}
通过注释,可以知道自旋的条件:
如果满足自旋的条件,则会进入if语句块,接着会执行runtime_doSpin()
方法,源码如下:
const (
active_spin_cnt = 30
)
func sync_runtime_doSpin() {
procyield(active_spin_cnt)
}
调用的procyield
其实是一段汇编代码,会执行30次的PAUSE
指令,相当于告诉处理器,这段代码序列是个循环等待。
自旋结束后,如果还没有获取到锁,则会进入第二阶段:通过信号量
进行同步控制,在源码中对应的是runtime_SemacquireMutex(&m.sema, queueLifo, 1)
方法,具体的源码如下:
func sync_runtime_SemacquireMutex(addr *uint32, lifo bool, skipframes int) {
semacquire1(addr, lifo, semaBlockProfile|semaMutexProfile, skipframes)
}
func semacquire1(addr *uint32, lifo bool, profile semaProfileFlags, skipframes int) {
gp := getg()
if gp != gp.m.curg {
throw("semacquire not on the G stack")
}
// Easy case.
if cansemacquire(addr) {
return
}
// Harder case:
// increment waiter count
// try cansemacquire one more time, return if succeeded
// enqueue itself as a waiter
// sleep
// (waiter descriptor is dequeued by signaler)
s := acquireSudog()
root := semroot(addr)
t0 := int64(0)
s.releasetime = 0
s.acquiretime = 0
s.ticket = 0
if profile&semaBlockProfile != 0 && blockprofilerate > 0 {
t0 = cputicks()
s.releasetime = -1
}
if profile&semaMutexProfile != 0 && mutexprofilerate > 0 {
if t0 == 0 {
t0 = cputicks()
}
s.acquiretime = t0
}
for {
lockWithRank(&root.lock, lockRankRoot)
// Add ourselves to nwait to disable "easy case" in semrelease.
atomic.Xadd(&root.nwait, 1)
// Check cansemacquire to avoid missed wakeup.
if cansemacquire(addr) {
atomic.Xadd(&root.nwait, -1)
unlock(&root.lock)
break
}
// Any semrelease after the cansemacquire knows we're waiting
// (we set nwait above), so go to sleep.
root.queue(addr, s, lifo)
goparkunlock(&root.lock, waitReasonSemacquire, traceEvGoBlockSync, 4+skipframes)
if s.ticket != 0 || cansemacquire(addr) {
break
}
}
if s.releasetime > 0 {
blockevent(s.releasetime-t0, 3+skipframes)
}
releaseSudog(s)
}
上面这段源码看起来可能会比较困难,其中最主要的还是for循环中的代码。当执行加锁操作后,信号量会加一,执行解锁操作后信号量会减一,这里的信号量可以理解成waiter
(等待的协程)的数量。
说的通俗一点,这一阶段将会使用信号量来控制对互斥锁的竞争。为了组织数据,通过semaRoot
结构体来封装互斥锁,此结构体被存储在semtable
这一哈希表结构中,当发生哈希冲突的时候,同一个table
中的semaRoot
会组织成一个treap
树(一种平衡二叉树)。下面是结构体源码:
封装互斥锁与等待者的结构体 semaRoot
type semaRoot struct {
lock mutex
treap *sudog // root of balanced tree of unique waiters.
nwait uint32 // Number of waiters. Read w/o the lock.
}
保存semaRoot 的结构体 semtable (哈希表)
const semTabSize = 251
var semtable [semTabSize]struct {
root semaRoot
pad [cpu.CacheLinePadSize - unsafe.Sizeof(semaRoot{})]byte
}
图解:
将互斥锁封装成semaRoot
结构体,然后根据互斥锁的地址计算哈希值然后取模得到其所在的桶,并通过双向链表解决哈希冲突
双向链表也会被组织成treap树,这样做的原因是为了快速查找( L o g 2 N Log_2N Log2N的复杂度)
在上图中,G1 G2 G3
是获取互斥锁e
的协程
若在上述的第二阶段长时间无法获取到锁,当前互斥锁会进入到饥饿模式
,之后如果可以很快获取到锁则会恢复到正常模式
小结
Go语言中的锁其实是一种混合锁,使用了 原子操作、自旋、信号量、操作系统界别的锁、等待队列、全局哈希表。
源码:
// Unlock unlocks m.
// It is a run-time error if m is not locked on entry to Unlock.
//
// A locked Mutex is not associated with a particular goroutine.
// It is allowed for one goroutine to lock a Mutex and then
// arrange for another goroutine to unlock it.
func (m *Mutex) Unlock() {
if race.Enabled {
_ = m.state
race.Release(unsafe.Pointer(m))
}
// Fast path: drop lock bit.
// 快速路径:
new := atomic.AddInt32(&m.state, -mutexLocked)
if new != 0 {
// Outlined slow path to allow inlining the fast path.
// To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.
m.unlockSlow(new)
}
}
unlockSlow方法
func (m *Mutex) unlockSlow(new int32) {
if (new+mutexLocked)&mutexLocked == 0 {
throw("sync: unlock of unlocked mutex")
}
if new&mutexStarving == 0 {
old := new
for {
// If there are no waiters or a goroutine has already
// been woken or grabbed the lock, no need to wake anyone.
// In starvation mode ownership is directly handed off from unlocking
// goroutine to the next waiter. We are not part of this chain,
// since we did not observe mutexStarving when we unlocked the mutex above.
// So get off the way.
if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
return
}
// Grab the right to wake someone.
new = (old - 1<<mutexWaiterShift) | mutexWoken
// 正常模式:不断通过CAS争抢互斥锁
if atomic.CompareAndSwapInt32(&m.state, old, new) {
runtime_Semrelease(&m.sema, false, 1)
return
}
old = m.state
}
} else {
// Starving mode: handoff mutex ownership to the next waiter, and yield
// our time slice so that the next waiter can start to run immediately.
// Note: mutexLocked is not set, the waiter will set it after wakeup.
// But mutex is still considered locked if mutexStarving is set,
// so new coming goroutines won't acquire it.
// 饥饿模式:直接唤醒等待队列中等待最久的协程
runtime_Semrelease(&m.sema, true, 1)
}
}
看过Lock的源码后再看Unlock的源码就会感觉简单很多了,Unlock也有一个快速路径,也就是通过原子操作尝试抢一下锁,如果没能成功则会进入unlockSlow
方法中,之后再根据当前模式(正常模式/饥饿模式)去做不一样的事,但是所做的事都被封装成了一个runtime_Semrelease
方法,如果是饥饿模式,则第二个参数为true
在一些并发读写的场景中,如果继续使用互斥锁的话会严重影响性能,尤其是一些读多写少的场景。对于这种情况是允许并发读,但是不允许并发写,为此,Go语言封装了一个互斥锁,结构体如下:
type RWMutex struct {
w Mutex // held if there are pending writers 互斥锁
writerSem uint32 // semaphore for writers to wait for completing readers 写信号量
readerSem uint32 // semaphore for readers to wait for completing writers 读信号量
readerCount int32 // number of pending readers 当前正在执行的读操作数量(因为读操作可以并发)
readerWait int32 // number of departing readers 进行写操作时,等待读的协程的数量
}
通过与源码其实不难看出,读写锁是基于互斥锁的
因为是基于互斥锁做的封装,比较简单,所以就不展示源码了。具体的原理其实很简单,在读之前,如果有写操作正在执行,则需要等写操作完成后才能读。换句话说,就是除了并发读可以被运行之外,并发的读+写或者并发的写都是会阻塞的。
本节介绍了原子操作、互斥锁与读写锁,Go语言的互斥锁是专门为协程所设计的,通过上面的分析可以知道其本质是一种混合锁,其目的也很简单:不到万不得已不使用系统级别的锁(因为这会锁住整个线程)。后面还介绍了读写锁,这是基于互斥锁为特定的场景而封装的,其读操作会优于互斥锁。实际使用时还是需要根据业务需求去进行选择