常用粗糙集特征选择(属性约简)的算法汇总-基于Feast和MIToolbox工具箱实现

常用粗糙集特征选择(属性约简)的算法汇总

这些算法主要建立在粗糙集工具箱Feast,MIToolbox进行实现。工具箱的安装:https://blog.csdn.net/qq_44822612/article/details/131816235

MIM, MRMR, MIFS, CMIM, JMI, DISR, CIFE, ICAP, CONDRED, CMI, RELIEF, FCBF, BETAGAMMA

以及以下各项的加权实现: MIM, CMIM, JMI, DISR, CMI

  1. MRMR算法
selectedIndices = feast('mrmr',10,data,labels) %mrmr算法,选择10个特征

H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information criteria ofmax-dependency, max-relevance, and min-redundancy,”IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226–1238,Aug. 2005.

  1. MIFS算法
selectedIndices = feast('mifs',10,data,labels,0.7) %% 使用 beta = 0.7 的 MIFS 算法选择前 10 个特征 

R. Battiti, “Using mutual information for selecting features in supervised neural net learning,” IEEETrans. Neural Netw., vol. 5, no. 4, pp. 537–550, Jul. 1994.

  1. FCBF算法
selectedIndices = feast('fcbf',10,data,labels,0) %% 使用 beta = 0 的 MIFS 算法选择前 10 个特征 

L. Yu and H. Liu, “Efficient feature selection via analysis of relevance and redundancy,” J. Mach. Learn. Res., vol. 5, pp. 1205–1224, 2004.

你可能感兴趣的:(粗糙集特征选择,Matlab程序,深度学习,Matlab,粗糙集,特征选择,Feast,MIToolbox)