Hadoop是目前应用最为广泛的分布式大数据处理框架,其具备可靠、高效、可伸缩等特点。
Hadoop的核心组件是HDFS、MapReduce。随着处理任务不同,各种组件相继出现,丰富Hadoop生态圈,目前生态圈结构大致如图所示:
根据服务对象和层次分为:数据来源层、数据传输层、数据存储层、资源管理层、数据计算层、任务调度层、业务模型层。
HDFS是整个hadoop体系的基础,负责数据的存储与管理。HDFS有着高容错性(fault-tolerant)的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。
MapReduce是一种基于磁盘的分布式并行批处理计算模型,用于处理大数据量的计算。其中Map对应数据集上的独立元素进行指定的操作,生成键-值对形式中间,Reduce则对中间结果中相同的键的所有值进行规约,以得到最终结果。
Spark是一种基于内存的分布式并行计算框架,不同于MapReduce的是——Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
Flink是一个基于内存的分布式并行处理框架,类似于Spark,但在部分设计思想有较大出入。对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已。
Flink VS Spark
Spark中,RDD在运行时是表现为Java Object,而Flink主要表现为logical plan。所以在Flink中使用的类Dataframe api是被作为第一优先级来优化的。但是相对来说在spark RDD中就没有了这块的优化了。
Spark中,对于批处理有RDD,对于流式有DStream,不过内部实际还是RDD抽象;在Flink中,对于批处理有DataSet,对于流式我们有DataStreams,但是是同一个公用的引擎之上两个独立的抽象,并且Spark是伪流处理,而Flink是真流处理。`
YARN是下一代MapReduce,即MRv2,是在第一代MapReduce基础上演变而来的,主要是为了解决原始Hadoop扩展性较差,不支持多计算框架而提出的。
Mesos诞生于UC Berkeley的一个研究项目,现已成为Apache项目,当前有一些公司使用Mesos管理集群资源,比如Twitter。与yarn类似,Mesos是一个资源统一管理和调度的平台,同样支持比如MR、steaming等多种运算框架。
解决分布式环境下的数据管理问题:统一命名,状态同步,集群管理,配置同步等。
Hadoop的许多组件依赖于Zookeeper,它运行在计算机集群上面,用于管理Hadoop操作。
Sqoop是SQL-to-Hadoop的缩写,主要用于传统数据库和Hadoop之前传输数据。数据的导入和导出本质上是Mapreduce程序,充分利用了MR的并行化和容错性。
Sqoop利用数据库技术描述数据架构,用于在关系数据库、数据仓库和Hadoop之间转移数据。
Hive定义了一种类似SQL的查询语言(HQL),将SQL转化为MapReduce任务在Hadoop上执行。通常用于离线分析。
HQL用于运行存储在Hadoop上的查询语句,Hive让不熟悉MapReduce开发人员也能编写数据查询语句,然后这些语句被翻译为Hadoop上面的MapReduce任务。
Impala是用于处理存储在Hadoop集群中的大量数据的MPP(大规模并行处理)SQL查询引擎。 它是一个用C ++和Java编写的开源软件。 与Apache Hive不同,Impala不基于MapReduce算法。 它实现了一个基于守护进程的分布式架构,它负责在同一台机器上运行的查询执行的所有方面。因此执行效率高于Apache Hive。
HBase是一个建立在HDFS之上,面向列的针对结构化数据的可伸缩、高可靠、高性能、分布式和面向列的动态模式数据库。
HBase采用了BigTable的数据模型:增强的稀疏排序映射表(Key/Value),其中,键由行关键字、列关键字和时间戳构成。
HBase提供了对大规模数据的随机、实时读写访问,同时,HBase中保存的数据可以使用MapReduce来处理,它将数据存储和并行计算完美地结合在一起。
Flume是一个可扩展、适合复杂环境的海量日志收集系统。它将数据从产生、传输、处理并最终写入目标的路径的过程抽象为数据流,在具体的数据流中,数据源支持在Flume中定制数据发送方,从而支持收集各种不同协议数据。
同时,Flume数据流提供对日志数据进行简单处理的能力,如过滤、格式转换等。此外,Flume还具有能够将日志写往各种数据目标(可定制)的能力。
Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。实现了主题、分区及其队列模式以及生产者、消费者架构模式。
生产者组件和消费者组件均可以连接到KafKa集群,而KafKa被认为是组件通信之间所使用的一种消息中间件。KafKa内部氛围很多Topic(一种高度抽象的数据结构),每个Topic又被分为很多分区(partition),每个分区中的数据按队列模式进行编号存储。被编号的日志数据称为此日志数据块在队列中的偏移量(offest),偏移量越大的数据块越新,即越靠近当前时间。生产环境中的最佳实践架构是Flume+KafKa+Spark Streaming。
Oozie是一个可扩展的工作体系,集成于Hadoop的堆栈,用于协调多个MapReduce作业的执行。它能够管理一个复杂的系统,基于外部事件来执行,外部事件包括数据的定时和数据的出现。
Oozie工作流是放置在控制依赖DAG(有向无环图 Direct Acyclic Graph)中的一组动作(例如,Hadoop的Map/Reduce作业、Pig作业等),其中指定了动作执行的顺序。
Oozie使用hPDL(一种XML流程定义语言)来描述这个图。
前文介绍了 Hadoop 单节点搭建,大家对 Hadoop 有了直观的感受,配置的几个主要 *-site.xml 也代表了主要模块:
包括Hadoop常用的工具类,由原来的Hadoopcore部分更名而来。主要包括系统配置工具Configuration、远程过程调用RPC、序列化机制和Hadoop抽象文件系统FileSystem等。它们为在通用硬件上搭建云计算环境提供基本的服务,并为运行在该平台上的软件开发提供了所需的API。
分布式文件系统,提供对应用程序数据的高吞吐量,高伸缩性,高容错性的访问。是Hadoop体系中数据存储管理的基础。它是一个高度容错的系统,能检测和应对硬件故障,用于在低成本的通用硬件上运行。HDFS简化了文件的一致性模型,通过流式数据访问,提供高吞吐量应用程序数据访问功能,适合带有大型数据集的应用程序。
namenode+ datanode + secondarynode
基于YARN的大型数据集并行处理系统。是一种计算模型,用以进行大数据量的计算。Hadoop的MapReduce实现,和Common、HDFS一起,构成了Hadoop发展初期的三个组件。MapReduce将应用划分为Map和Reduce两个步骤,其中Map对数据集上的独立元素进行指定的操作,生成键-值对形式中间结果。Reduce则对中间结果中相同“键”的所有“值”进行规约,以得到最终结果。MapReduce这样的功能划分,非常适合在大量计算机组成的分布式并行环境里进行数据处理。
任务调度和集群资源管理
resourcemanager + nodemanager
HDFS文件存储机制:
Namenode 管理着文件系统的命令空间(Namespace)。
它维护着文件系统树(filesystemtree)以及文件树中所有的文件和文件夹的元数据(metadata),元数据包括编辑日志(edits)和镜像文件(fsimage)。
管理这些信息的文件有两个,分别是Namespace 镜像文件(fsimage)和编辑日志文件(edits),编辑日志主要是记录对hdfs进行的修改;镜像文件主要是记录hdfs的文件树形结构。这些信息被Cache在RAM中,当然,这两个文件也会被持久化存储在本地硬盘。
Namenode记录着每个文件中各个块所在的数据节点的位置信息,但是他并不持久化存储这些信息,因为这些信息会在系统启动时从数据节点重建。
没有namenode,文件系统是无法使用的。事实上,如果运行namenode服务的服务器坏掉,文件系统上的所有文件将会丢失,对NameNode进行容错冗余机制是非常重要的。
Datanode是文件系统的工作节点,他们根据客户端或者是namenode的调度存储和检索数据,并且定期向namenode发送他们所存储的块(block)的列表。
集群中的从节点服务器都运行一个DataNode后台程序,这个后台程序负责把HDFS数据块读写到本地的文件系统。当需要通过客户端读/写某个数据时,先由NameNode告诉客户端去哪个DataNode进行具体的读/写操作,然后,客户端直接与这个DataNode服务器上的后台程序进行通信,并且对相关的数据块进行读/写操作。
Secondary NameNode是一个用来监控HDFS状态的辅助后台程序。
和NameNode一样,每个集群都有一个Secondary NameNode,并且部署在一个单独的服务器上。Secondary NameNode不同于NameNode,它不接受或者记录任何实时的数据变化,但是,它会与NameNode进行通信,以便定期地保存HDFS元数据的快照。
由于NameNode是单点的,通过Secondary NameNode的快照功能,可以将NameNode的宕机时间和数据损失降低到最小。同时,如果NameNode发生问题,Secondary NameNode可以及时地作为备用NameNode使用。
Yarn是Hadoop集群的资源管理系统,它主要包括两部分功能:
Yarn的另一个目标就是拓展Hadoop,使得它不仅仅可以支持MapReduce计算,还能很方便的管理诸如Hive、Hbase、Pig、Spark/Shark等应用。这种新的架构设计能够使得各种类型的应用运行在Hadoop上面,并通过Yarn从系统层面进行统一的管理,也就是说,有了Yarn,各种应用就可以互不干扰的运行在同一个Hadoop系统中,共享整个集群资源,如下图所示:
Yarn主要由以下几个组件组成:
Container是Yarn对计算机计算资源的抽象,它其实就是一组CPU和内存资源,所有的应用都会运行在Container中。
ApplicationMaster是对运行在Yarn中某个应用的抽象,它其实就是某个类型应用的实例,ApplicationMaster是应用级别的,它的主要功能就是向ResourceManager(全局的)申请计算资源(Containers)并且和NodeManager交互来执行和监控具体的task。
Scheduler是ResourceManager专门进行资源管理的一个组件,负责分配NodeManager上的Container资源,NodeManager也会不断发送自己Container使用情况给ResourceManager。
ResourceManager和NodeManager两个进程主要负责系统管理方面的任务。ResourceManager有一个Scheduler,负责各个集群中应用的资源分配。对于每种类型的每个应用,都会对应一个ApplicationMaster实例,ApplicationMaster通过和ResourceManager沟通获得Container资源来运行具体的job,并跟踪这个job的运行状态、监控运行进度。
ResourceManage 即资源管理,在YARN中,ResourceManager负责集群中所有资源的统一管理和分配,它接收来自各个节点(NodeManager)的资源汇报信息,并把这些信息按照一定的策略分配给各个应用程序(实际上是ApplicationManager)。
RM包括Scheduler(定时调度器)和ApplicationManager(应用管理器)。
NM是ResourceManager在slave机器上的代理,负责容器管理,并监控它们的资源使用情况,以及向ResourceManager/Scheduler提供资源使用报告