leetcode-动态规划【背包问题】

背包问题篇:

基础背包:

416. 分割等和子集

1049. 最后一块石头的重量ii

494. 目标和

474. 一和零

完全背包:

518. 零钱兑换ii

377. 组合总和iv

70. 爬楼梯

322. 零钱兑换

279. 完全平方数

139. 单词拆分

多重背包:


0-1背包:(所有元素只能放入一次)

n件物品和最大承受重量为w的背包,其中第i件物品的重量是weight[i],得到的价值是value[i],每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

1. 确定dp数组以及下标的含义

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。i:物品编号,j:背包容量,dp[i][j]:价值总和

leetcode-动态规划【背包问题】_第1张图片

2. 确定递推公式

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

3. dp数组初始化

dp[i][0]:背包容量为0因此价值总和为0

dp[0][j]:存放物品0的时候背包价值总和,当j

4. 确定遍历顺序:先遍历物品/背包重量

5. 举例推导dp数组

416. 分割等和子集

leetcode-动态规划【背包问题】_第2张图片

leetcode-动态规划【背包问题】_第3张图片

leetcode-动态规划【背包问题】_第4张图片

class Solution(object):
    def canPartition(self, nums):
        """
        :type nums: List[int]
        :rtype: bool
        """
        if sum(nums) % 2: return False
        # 要求找到元素和为sum/2的子集
        target = sum(nums) // 2
        # dp[i][j]代表可装物品为0-i,背包容量为j的情况下,背包内容量的最大价值(最大子集和)
        dp = [[0 for _ in range(target+1)] for _ in range(len(nums))]
        # 背包容量为0且只能放入nums[i]的情况下背包最大价值(最大子集和)
        for j in range(nums[0],target+1):
            dp[0][j] = nums[0]
        # 递推公式(每行从左到右遍历)
        for i in range(1, len(nums)):
            for j in range(1, target+1):
                # 当背包不能容纳nums[i]时
                if j < nums[i]:
                    dp[i][j] = dp[i-1][j]
                # 当背包可以容纳nums[i]时
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i-1][j-nums[i]] + nums[i])
        return dp[-1][-1] == target

使用滑动数组:

class Solution(object):
    def canPartition(self, nums):
        """
        :type nums: List[int]
        :rtype: bool
        """
        if not nums or sum(nums) % 2: return False
        target = sum(nums) // 2
        # 滑动数组(因为只需要保留上一行的值因此可以使用一维数组)
        dp = [0 for _ in range(target+1)]
        for i in range(len(nums)):
            for j in range(target, nums[i]-1, -1):
                dp[j] = max(dp[j], dp[j-nums[i]] + nums[i])
        return dp[-1] == target

1049. 最后一块石头的重量ii

leetcode-动态规划【背包问题】_第5张图片

class Solution(object):
    def lastStoneWeightII(self, stones):
        """
        :type stones: List[int]
        :rtype: int
        """
        # 将stones分为重量差不多的两堆
        target = sum(stones) // 2
        # dp设为滑动数组,dp[j]存储最接近重量j其不超过的石头总重量
        dp = [0 for _ in range(target+1)]
        # 遍历stones
        for i in range(len(stones)):
            for j in range(target, stones[i]-1, -1):
                dp[j] = max(dp[j], dp[j-stones[i]]+stones[i])
        return sum(stones)-2*dp[-1]

494. 目标和

leetcode-动态规划【背包问题】_第6张图片

class Solution(object):
    def findTargetSumWays(self, nums, target):
        """
        :type nums: List[int]
        :type target: int
        :rtype: int
        """
        if len(nums) == 1 and nums[0] != target and nums[0] != -1 * target:
            return 0
        sum_nums = sum(nums)
        if target > sum_nums or target < -1 * sum_nums: return 0
        # dp[][sum_nums]为中心点
        dp = [[0 for _ in range(2*sum_nums+1)] for _ in range(len(nums))]
        for j in range(2*sum_nums+1):
            if abs(j - sum_nums) == nums[0]:
                if nums[0] == 0: dp[0][j] = 2
                else: dp[0][j] = 1
        for i in range(len(nums)-1):
            for j in range(2*sum_nums+1):
                if dp[i][j] == 0: continue
                dp[i + 1][j - nums[i + 1]] += dp[i][j]
                dp[i + 1][j + nums[i + 1]] += dp[i][j]
        return dp[-1][target+sum_nums]

第二种方法:

假设nums = [3,1,2,5,4],此时选3和1前面的符号为加号,其余为减号,那么此时加法获得的和为3+1=4,减法获得的和为2+5+4=11,也可以通过sum(nums)-3-1=15-3-1=11获得。以此类推,设加法获得的和为x,则减法获得的和为(sum-x),问题转化满足x-(sum-x)=target / x=(sum+target)/2有几种方案。

class Solution(object):
    def findTargetSumWays(self, nums, target):
        """
        :type nums: List[int]
        :type target: int
        :rtype: int
        """
        sum_nums = sum(nums)
        # 注意边界条件
        if abs(target) > sum_nums or (sum_nums + target) % 2 == 1: return 0
        bagSize = (sum_nums + target) // 2
        dp = [0] * (bagSize + 1)
        dp[0] = 1
        for i in range(len(nums)):
            for j in range(bagSize, nums[i] - 1, -1):
                dp[j] += dp[j - nums[i]]
        return dp[bagSize]

474. 一和零

leetcode-动态规划【背包问题】_第7张图片

dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]

class Solution(object):
    def findMaxForm(self, strs, m, n):
        """
        :type strs: List[str]
        :type m: int
        :type n: int
        :rtype: int
        """
        # dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]
        dp = [[0 for _ in range(n+1)] for _ in range(m+1)]
        for str in strs:
            onenum = str.count('1')
            zeronum = str.count('0')
            for i in range(m, zeronum-1, -1):
                for j in range(n, onenum-1, -1):
                    dp[i][j] = max(dp[i][j], dp[i-zeronum][j-onenum] + 1)
        return dp[m][n]

完全背包:(元素可以重复放入)

518. 零钱兑换ii

leetcode-动态规划【背包问题】_第8张图片

class Solution(object):
    def change(self, amount, coins):
        """
        :type amount: int
        :type coins: List[int]
        :rtype: int
        """
        # dp[i][j]表示coins[i]的面值加入排列后,总和为amount的组合数
        dp = [0 for _ in range(amount+1)]
        dp[0] = 1
        for i in range(len(coins)):
            for j in range(coins[i], amount+1):
                dp[j] += dp[j-coins[i]]
        return dp[-1]

377. 组合总和iv

leetcode-动态规划【背包问题】_第9张图片

class Solution(object):
    def combinationSum4(self, nums, target):
        """
        :type nums: List[int]
        :type target: int
        :rtype: int
        """
        dp = [0 for _ in range(target+1)]
        dp[0] = 1
        for j in range(target+1):
            for i in range(len(nums)):
                if j-nums[i] >= 0:
                    dp[j] += dp[j-nums[i]]
        return dp[-1]

70. 爬楼梯

leetcode-动态规划【背包问题】_第10张图片

class Solution(object):
    def climbStairs(self, n):
        """
        :type n: int
        :rtype: int
        """
        dp = [0 for _ in range(n+1)]
        dp[0] = 1
        for j in range(n+1):
            for step in range(1,3):
                if j - step >= 0:
                    dp[j] += dp[j-step]
        return dp[-1]

322. 零钱兑换

leetcode-动态规划【背包问题】_第11张图片

class Solution(object):
    def coinChange(self, coins, amount):
        """
        :type coins: List[int]
        :type amount: int
        :rtype: int
        """
        dp = [amount + 1] * (amount + 1)
        dp[0] = 0
        for coin in coins:
            for j in range(coin, amount + 1):
                dp[j] = min(dp[j], dp[j - coin] + 1)
        if dp[amount] < amount + 1:
            return dp[amount]
        else:
            return -1

279. 完全平方数

leetcode-动态规划【背包问题】_第12张图片

class Solution(object):
    def numSquares(self, n):
        """
        :type n: int
        :rtype: int
        """
        square, i = [], 1
        while i**2 <= n:
            square.append(i**2)
            i += 1

        dp = [n+1] * (n+1)
        dp[0] = 0
        for i in range(len(square)):
            for j in range(square[i], n+1):
                dp[j] = min(dp[j], dp[j-square[i]]+1)
        if dp[n] > n+1:
            return -1
        else:
            return dp[n]

139. 单词拆分

leetcode-动态规划【背包问题】_第13张图片

class Solution(object):
    def wordBreak(self, s, wordDict):
        """
        :type s: str
        :type wordDict: List[str]
        :rtype: bool
        """
        # dp[j]=1即截至此处s[:j+1]可划分,dp[j]=0即不可划分
        dp = [0 for _ in range(len(s)+1)]
        dp[0] = 1
        for j in range(1, len(s)+1):
            for word in wordDict:
                if j >= len(word):
                    dp[j] = dp[j] or (dp[j - len(word)] and word == s[j - len(word):j])
        return dp[-1] == 1

多重背包:

你可能感兴趣的:(leetcode,python,leetcode,数据结构,动态规划,算法)