Caffe学习(2)-CentOS7下Caffe的安装

1. 安装软件扩展源

sudo yum -y install epel-release

2. 环境准备

  • 更新yum以及其它软件包:
sudo yum update
  • 安装 gcc 和 g++:
sudo yum install gcc gcc-c++
  • 安装git, vim, python dev 和 pip:
sudo yum install git vim python-devel python-pip

3. 安装 Caffe 依赖

  • 安装所需的库
sudo yum install protobuf-devel leveldb-devel openblas-devel snappy-devel opencv-devel boost-devel hdf5-devel gflags-devel glog-devel lmdb-devel
  • 安装CUDA
    如果需要用到GPU跑的话,要安装CUDA:
sudo wget http://developer.download.nvidia.com/compute/cuda/repos/rhel6/x86_64/cuda-repo-rhel6-7.5-18.x86_64.rpm
sudo rpm --install cuda-repo-rhel6-7.5-18.x86_64.rpm
sudo yum clean expire-cache
sudo yum install cuda
  • GPU 支持

注意: CUDA 只支持 NVIDIA 显卡,并且并不支持所有的显卡,可以官网查询.

下载并安装最新的 NVIDIA 驱动

下载并安装 CUDNNv3 (需要注册 NVIDIA账号,或者直接百度网盘),然后执行命令安装:

sudo wget http://124.202.164.4/files/318300000ADB4203/developer2.download.nvidia.com/compute/machine-learning/cudnn/secure/v7.0.3/prod/9.0_20170926/cudnn-9.0-linux-x64-v7.tgz
sudo tar -xvf cudnn-9.0-linux-x64-v7.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/

4. 获取 Caffe

git clone https://github.com/BVLC/caffe

5.安装 Python 依赖

pip install --upgrade pip
for req in $(cat caffe/python/requirements.txt); do sudo pip install $req; done

6. 复制Caffe配置文件

cd caffe
cp Makefile.config.example Makefile.config

7. 编辑Caffe配置文件

vim Makefile.config
  • 将BLAS := atlas 改为 BLAS := open
  • 在下面添加 BLAS_INCLUDE := /usr/include/openblas
  • 接着编辑 PYTHON_INCLUDE := /usr/include/python2.7 \ 下面那一行:
    /usr/lib/python2.7/dist-packages/numpy/core/include
    改为/usr/lib64/python2.7/site-packages/numpy/core/include
  • CPU 支持: #CPU_ONLY := 1 改为 CPU_ONLY := 1
  • GPU 支持: #USE_CUDNN := 1 改为 USE_CUDNN := 1

8. 开始编译 Makefile.conf

sudo make all -j16 #-j16表示开16个线程并行编译,可以大大减少编译时间,但是线程数不要超过cpu核数
sudo make runtest
sudo make pycaffe
sudo make distribute

9. 运行测试

cd caffe
./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh
./examples/mnist/train_lenet.sh

注:
如果不用GPU,而是用CPU跑,需要修改[caff root]]/examples/mnist/lenet_solver.prototxt文件最后一行,
将GPU改为CPU,并执行train_lenet.sh。同样如果用GPU跑,就把那个设成GPU。

你可能感兴趣的:(Caffe学习(2)-CentOS7下Caffe的安装)