Java基础知识

一、为什么说 Java 语言“编译与解释并存”?

  这是因为 Java 语言既具有编译型语言的特征,也具有解释型语言的特征。因为 Java 程序要经过先编译,后解释两个步骤,由 Java 编写的程序需要先经过编译步骤,生成字节码(.class 文件),这种字节码必须由 Java 解释器来解释执行。

二、静态方法为什么不能调用非静态成员?

这个需要结合 JVM 的相关知识,主要原因如下:

1、静态方法是属于类的,在类加载的时候就会分配内存,可以通过类名直接访问。而非静态成员属于实例对象,只有在对象实例化之后才存在,需要通过类的实例对象去访问。
2、在类的非静态成员不存在的时候静态成员就已经存在了,此时调用在内存中还不存在的非静态成员,属于非法操作。

三、成员变量与局部变量的区别有哪些?

  • 语法形式 :从语法形式上看,成员变量是属于类的,而局部变量是在代码块或方法中定义的变量或是方法的参数;成员变量可以被 public,private,static 等修饰符所修饰,而局部变量不能被访问控制修饰符及 static 所修饰;但是,成员变量和局部变量都能被 final 所修饰。
  • 存储方式 :从变量在内存中的存储方式来看,如果成员变量是使用 static 修饰的,那么这个成员变量是属于类的,如果没有使用 static
    修饰,这个成员变量是属于实例的。而对象存在于堆内存,局部变量则存在于栈内存。
  • 生存时间:从变量在内存中的生存时间上看,成员变量是对象的一部分,它随着对象的创建而存在,而局部变量随着方法的调用而自动生成,随着方法的调用结束而消亡。
  • 默认值 :从变量是否有默认值来看,成员变量如果没有被赋初始值,则会自动以类型的默认值而赋值(一种情况例外:被 final
    修饰的成员变量也必须显式地赋值),而局部变量则不会自动赋值。

四、为什么重写 equals() 时必须重写 hashCode() 方法?

  • 如果两个对象的hashCode 值相等,那这两个对象不一定相等(哈希碰撞)。
  • 如果两个对象的hashCode 值相等并且equals()方法也返回 true,我们才认为这两个对象相等。
  • 如果两个对象的hashCode 值不相等,我们就可以直接认为这两个对象不相等。

  因为两个相等的对象的 hashCode 值必须是相等。也就是说如果 equals 方法判断两个对象是相等的,那这两个对象的 hashCode 值也要相等。
  如果重写 equals() 时没有重写 hashCode() 方法的话就可能会导致 equals 方法判断是相等的两个对象,hashCode 值却不相等。

五、你的项目中哪里用到了泛型?

  • 可用于定义通用返回结果 CommonResult 通过参数 T 可根据具体的返回类型动态指定结果的数据类型
  • 定义 Excel 处理类 ExcelUtil 用于动态指定 Excel 导出的数据类型
  • 用于构建集合工具类。参考 Collections 中的 sort, binarySearch 方法

六、Exception 和 Error 有什么区别?

在 Java 中,所有的异常都有一个共同的祖先 java.lang 包中的 Throwable 类。Throwable 类有两个重要的子类:

  • Exception :程序本身可以处理的异常,可以通过 catch 来进行捕获。Exception 又可以分为 Checked
    Exception (受检查异常,必须处理) 和 Unchecked Exception (不受检查异常,可以不处理)。
  • Error :Error 属于程序无法处理的错误 ,我们没办法通过 catch 来进行捕获不建议通过catch捕获 。例如Java
    虚拟机运行错误(Virtual MachineError)、虚拟机内存不够错误(OutOfMemoryError)、类定义错误(NoClassDefFoundError)等
    。这些异常发生时,Java 虚拟机(JVM)一般会选择线程终止。

七、Checked Exception 和 Unchecked Exception 有什么区别?

Checked Exception 即受检查异常,Java 代码在编译过程中,如果受检查异常没有被 catch/throw 处理的话,就没办法通过编译 。

除了RuntimeException及其子类以外,其他的Exception类及其子类都属于受检查异常 。常见的受检查异常有: IO 相关的异常、ClassNotFoundException 、SQLException…。

Unchecked Exception 即 不受检查异常 ,Java 代码在编译过程中 ,我们即使不处理不受检查异常也可以正常通过编译。

RuntimeException 及其子类都统称为非受检查异常,例如:NullPointerException、NumberFormatException(字符串转换为数字)、ArrayIndexOutOfBoundsException(数组越界)、ClassCastException(类型转换错误)、ArithmeticException(算术错误)等。

八、finally 中的代码一定会执行吗?

不一定的!在某些情况下,finally 中的代码不会被执行。

就比如说 finally 之前虚拟机被终止运行的话,finally 中的代码就不会被执行。

另外,在以下 2 种特殊情况下,finally 块的代码也不会被执行:

  • 程序所在的线程死亡。
  • 关闭 CPU。

九、既然有了字节流,为什么还要有字符流?

问题本质想问:不管是文件读写还是网络发送接收,信息的最小存储单元都是字节,那为什么 I/O 流操作要分为字节流操作和字符流操作呢?

回答:字符流是由 Java 虚拟机将字节转换得到的,问题就出在这个过程还算是非常耗时,并且,如果我们不知道编码类型就很容易出现乱码问题。所以, I/O 流就干脆提供了一个直接操作字符的接口,方便我们平时对字符进行流操作。如果音频文件、图片等媒体文件用字节流比较好,如果涉及到字符的话使用字符流比较好。

十、为什么 Java 只有值传递?

  • 如果参数是基本类型的话,很简单,传递的就是基本类型的字面量值的拷贝,会创建副本。
  • 如果参数是引用类型,传递的就是实参所引用的对象在堆中地址值的拷贝,同样也会创建副本。

十一、什么是序列化?什么是反序列化?

序列化(serialization)在计算机科学的数据处理中,是指将数据结构或对象状态转换成可取用格式(例如存成文件,存于缓冲,或经由网络中发送),以留待后续在相同或另一台计算机环境中,能恢复原先状态的过程。依照序列化格式重新获取字节的结果时,可以利用它来产生与原始对象相同语义的副本。对于许多对象,像是使用大量引用的复杂对象,这种序列化重建的过程并不容易。面向对象中的对象序列化,并不概括之前原始对象所关系(调用)的函数。这种过程也称为对象编组(marshalling)。从一系列字节提取数据结构的反向操作,是反序列化(也称为解编组、deserialization、unmarshalling)。

综上:序列化的主要目的是通过网络传输对象或者说是将对象存储到文件系统、数据库、内存中。

实际开发中有哪些用到序列化和反序列化的场景?

  • 对象在进行网络传输(比如远程方法调用RPC的时候)之前需要先被序列化,接收到序列化的对象之后需要再进行反序列化;
  • 将对象存储到文件中的时候需要进行序列化,将对象从文件中读取出来需要进行反序列化。
  • 将对象存储到缓存数据库(如 Redis)时需要用到序列化,将对象从缓存数据库中读取出来需要反序列化。

十二、反射机制的优缺点?

  反射之所以被称为框架的灵魂,主要是因为它赋予了我们在运行时分析类以及执行类中方法的能力。通过反射你可以获取任意一个类的所有属性和方法,你还可以调用这些方法和属性。

  • 优点 : 可以让咱们的代码更加灵活、为各种框架提供开箱即用的功能提供了便利
  • 缺点:让我们在运行时有了分析操作类的能力,这同样也增加了安全问题。比如可以无视泛型参数的安全检查(泛型参数的安全检查发生在编译时)。另外,反射的性能也要稍差点,不过,对于框架来说实际是影响不大的。

十三、为什么浮点数 float 或 double 运算的时候会有精度丢失的风险呢?

  这个和计算机保存浮点数的机制有很大关系。我们知道计算机是二进制的,而且计算机在表示一个数字时,宽度是有限的,无限循环的小数存储在计算机时,只能被截断,所以就会导致小数精度发生损失的情况。这也就是解释了为什么浮点数没有办法用二进制精确表示。

就比如说十进制下的 0.2 就没办法精确转换成二进制小数:

// 0.2 转换为二进制数的过程为,不断乘以 2,直到不存在小数为止,
// 在这个计算过程中,得到的整数部分从上到下排列就是二进制的结果。
0.2 * 2 = 0.4 -> 0
0.4 * 2 = 0.8 -> 0
0.8 * 2 = 1.6 -> 1
0.6 * 2 = 1.2 -> 1
0.2 * 2 = 0.4 -> 0(发生循环)
...

十四、为什么要使用集合?

当我们需要保存一组类型相同的数据的时候,我们应该是用一个容器来保存,这个容器就是数组,但是,使用数组存储对象具有一定的弊端, 因为我们在实际开发中,存储的数据的类型是多种多样的,于是,就出现了“集合”,集合同样也是用来存储多个数据的。

数组的缺点是一旦声明之后,长度就不可变了;同时,声明数组时的数据类型也决定了该数组存储的数据的类型;而且,数组存储的数据是有序的、可重复的,特点单一。 但是集合提高了数据存储的灵活性,Java 集合不仅可以用来存储不同类型不同数量的对象,还可以保存具有映射关系的数据。

十五、比较 HashSet、LinkedHashSet 和 TreeSet 三者的异同

  • HashSet、LinkedHashSet 和 TreeSet 都是 Set 接口的实现类,都能保证元素唯一,并且都不是线程安全的。
  • HashSet、LinkedHashSet 和 TreeSet 的主要区别在于底层数据结构不同。HashSet
    的底层数据结构是哈希表(基于 HashMap 实现)。LinkedHashSet 的底层数据结构是链表和哈希表,元素的插入和取出顺序满足
    FIFO。TreeSet 底层数据结构是红黑树,元素是有序的,排序的方式有自然排序和定制排序。
  • 底层数据结构不同又导致这三者的应用场景不同。HashSet 用于不需要保证元素插入和取出顺序的场景,LinkedHashSet
    用于保证元素的插入和取出顺序满足 FIFO 的场景,TreeSet 用于支持对元素自定义排序规则的场景。

十六、HashMap 的长度为什么是 2 的幂次方?

为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀。我们上面也讲到了过了,Hash 值的范围值-2147483648 到 2147483647,前后加起来大概 40 亿的映射空间,只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。但问题是一个 40 亿长度的数组,内存是放不下的。所以这个散列值是不能直接拿来用的。用之前还要先做对数组的长度取模运算,得到的余数才能用来要存放的位置也就是对应的数组下标。这个数组下标的计算方法是“ (n - 1) & hash”。(n 代表数组长度)。这也就解释了 HashMap 的长度为什么是 2 的幂次方。

这个算法应该如何设计呢?

我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是 2 的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是 2 的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是 2 的幂次方。

十七、HashMap 多线程操作导致死循环问题

主要原因在于并发下的 Rehash 会造成元素之间会形成一个循环链表。不过,jdk 1.8 后解决了这个问题,但是还是不建议在多线程下使用 HashMap,因为多线程下使用 HashMap 还是会存在其他问题比如数据丢失。并发环境下推荐使用 ConcurrentHashMap 。

十八、length、length()、size()

  • java 中的 length属性是针对数组说的,比如说你声明了一个数组,想知道这个数组的长度则用到了 length 这个属性.

  • java 中的 length() 方法是针对字符串说的,如果想看这个字符串的长度则用到 length() 这个方法. java 中的

  • size() 方法是针对泛型集合说的,如果想看这个泛型有多少个元素,就调用此方法来查看!

十九、死锁的四个必要条件

  • 互斥条件:该资源任意一个时刻只由一个线程占用。
  • 请求与保持条件:一个线程因请求资源而阻塞时,对已获得的资源保持不放。
  • 不剥夺条件:线程已获得的资源在未使用完之前不能被其他线程强行剥夺,只有自己使用完毕后才释放资源。
  • 循环等待条件:若干线程之间形成一种头尾相接的循环等待资源关系。

二十、如何预防死锁? 破坏死锁的产生的必要条件即可

  • 破坏请求与保持条件 :一次性申请所有的资源。
  • 破坏不剥夺条件 :占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源。
  • 破坏循环等待条件 :靠按序申请资源来预防。按某一顺序申请资源,释放资源则反序释放。破坏循环等待条件。

二十一、说说 sleep() 方法和 wait() 方法区别和共同点?

  • 两者最主要的区别在于:sleep() 方法没有释放锁,而 wait() 方法释放了锁 。
  • 两者都可以暂停线程的执行。
  • wait() 通常被用于线程间交互/通信,sleep() 通常被用于暂停执行。
  • wait() 方法被调用后,线程不会自动苏醒,需要别的线程调用同一个对象上的 notify() 或者 notifyAll()
    方法。sleep() 方法执行完成后,线程会自动苏醒。或者可以使用 wait(long timeout) 超时后线程会自动苏醒。

二十二、为什么我们调用 start() 方法时会执行 run() 方法,为什么我们不能直接调用 run() 方法?

new 一个 Thread,线程进入了新建状态。调用 start()方法,会启动一个线程并使线程进入了就绪状态,当分配到时间片后就可以开始运行了。 start() 会执行线程的相应准备工作,然后自动执行 run() 方法的内容,这是真正的多线程工作。 但是,直接执行 run() 方法,会把 run() 方法当成一个 main 线程下的普通方法去执行,并不会在某个线程中执行它,所以这并不是多线程工作。

总结: 调用 start() 方法方可启动线程并使线程进入就绪状态,直接执行 run() 方法的话不会以多线程的方式执行。

二十三、并发编程的三个重要特性

  • 原子性 : 一次操作或者多次操作,要么所有的操作全部都得到执行并且不会受到任何因素的干扰而中断,要么都不执行。synchronized可以保证代码片段的原子性。
  • 可见性 :当一个线程对共享变量进行了修改,那么另外的线程都是立即可以看到修改后的最新值。volatile 关键字可以保证共享变量的可见性。
  • 有序性 :代码在执行的过程中的先后顺序,Java 在编译器以及运行期间的优化,代码的执行顺序未必就是编写代码时候的顺序。volatile关键字可以禁止指令进行重排序优化。

二十四、说说 synchronized 关键字和 volatile 关键字的区别

synchronized 关键字和 volatile 关键字是两个互补的存在,而不是对立的存在!

  • volatile 关键字是线程同步的轻量级实现,所以 volatile 性能肯定比synchronized关键字要好 。但是volatile 关键字只能用于变量而 synchronized 关键字可以修饰方法以及代码块 。
  • volatile 关键字能保证数据的可见性,但不能保证数据的原子性。synchronized 关键字两者都能保证。
  • volatile关键字主要用于解决变量在多个线程之间的可见性,而 synchronized 关键字解决的是多个线程之间访问资源的同步性。

二十五、使用线程池的好处

  • 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
  • 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。

二十六、ThreadPoolExecutor 重要参数

  • corePoolSize : 核心线程数线程数定义了最小可以同时运行的线程数量。
  • maximumPoolSize : 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。
  • workQueue: 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。
  • keepAliveTime:当线程池中的线程数量大于 corePoolSize
    的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了
    keepAliveTime才会被回收销毁;
  • unit : keepAliveTime 参数的时间单位。
  • threadFactory :executor 创建新线程的时候会用到。
  • handler :饱和策略。关于饱和策略下面单独介绍一下。

二十七、ThreadPoolExecutor 饱和策略定义

  • ThreadPoolExecutor.AbortPolicy :抛出RejectedExecutionException来拒绝新任务的处理。
  • ThreadPoolExecutor.CallerRunsPolicy:调用执行自己的线程运行任务,也就是直接在调用execute方法的线程中运行(run)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果您的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。
  • ThreadPoolExecutor.DiscardPolicy :不处理新任务,直接丢弃掉。
  • ThreadPoolExecutor.DiscardOldestPolicy : 此策略将丢弃最早的未处理的任务请求。

二十八、Runnable vs Callable

Runnable自 Java 1.0 以来一直存在,但Callable仅在 Java 1.5 中引入,目的就是为了来处理Runnable不支持的用例。Runnable 接口不会返回结果或抛出检查异常,但是 Callable 接口可以。所以,如果任务不需要返回结果或抛出异常推荐使用 Runnable 接口,这样代码看起来会更加简洁。

工具类 Executors 可以实现将 Runnable 对象转换成 Callable 对象。(Executors.callable(Runnable task) 或 Executors.callable(Runnable task, Object result))。

二十九、常见对比

1、execute() vs submit()

  • execute()方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功与否;
  • submit()方法用于提交需要返回值的任务。线程池会返回一个 Future 类型的对象,通过这个 Future对象可以判断任务是否执行成功,并且可以通过 Future 的 get()方法来获取返回值,get()方法会阻塞当前线程直到任务完成,而使用get(long timeout,TimeUnit unit)方法的话,如果在 timeout 时间内任务还没有执行完,就会抛出 java.util.concurrent.TimeoutException。

2、shutdown()VSshutdownNow()

  • shutdown() :关闭线程池,线程池的状态变为 SHUTDOWN。线程池不再接受新任务了,但是队列里的任务得执行完毕。
  • shutdownNow() :关闭线程池,线程的状态变为 STOP。线程池会终止当前正在运行的任务,并停止处理排队的任务并返回正在等待执行的 List。

3、isTerminated() VS isShutdown()

  • isShutDown 当调用 shutdown() 方法后返回为 true。
  • isTerminated 当调用 shutdown() 方法后,并且所有提交的任务完成后返回为 true

三十、线程池大小确定

有一个简单并且适用面比较广的公式:

  • CPU 密集型任务(N+1): 这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1,比 CPU
    核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU
    就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。
  • I/O 密集型任务(2N): 这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU
    来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N。

如何判断是 CPU 密集任务还是 IO 密集任务?
CPU 密集型简单理解就是利用 CPU 计算能力的任务比如你在内存中对大量数据进行排序。但凡涉及到网络读取,文件读取这类都是 IO 密集型,这类任务的特点是 CPU 计算耗费时间相比于等待 IO 操作完成的时间来说很少,大部分时间都花在了等待 IO 操作完成上。

三十一、公平锁和非公平锁只有两处不同

  1. 非公平锁在调用 lock 后,首先就会调用 CAS 进行一次抢锁,如果这个时候恰巧锁没有被占用,那么直接就获取到锁返回了。
  2. 非公平锁在 CAS 失败后,和公平锁一样都会进入到 tryAcquire 方法,在 tryAcquire 方法中,如果发现锁这个时候被释放了(state == 0),非公平锁会直接 CAS 抢锁,但是公平锁会判断等待队列是否有线程处于等待状态,如果有则不去抢锁,乖乖排到后面。

公平锁和非公平锁就这两点区别,如果这两次 CAS 都不成功,那么后面非公平锁和公平锁是一样的,都要进入到阻塞队列等待唤醒。

相对来说,非公平锁会有更好的性能,因为它的吞吐量比较大。当然,非公平锁让获取锁的时间变得更加不确定,可能会导致在阻塞队列中的线程长期处于饥饿状态。

三十二、AQS 原理

AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是用 CLH 队列锁实现的,即将暂时获取不到锁的线程加入到队列中。

CLH(Craig,Landin,and
Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS
是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配。

三十三、Semaphore(信号量)、CountDownLatch (倒计时器)、CyclicBarrier(循环栅栏)

  • Semaphore(信号量)可以指定多个线程同时访问某个资源。(限制最多有多少个线程同时访问某个资源)
  • CountDownLatch 允许 count 个线程阻塞在一个地方,直至所有线程的任务都执行完毕
  • 让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活。

CountDownLatch 是计数器,只能使用一次,而 CyclicBarrier 的计数器提供 reset 功能,可以多次使用。
CountDownLatch: 一个或者多个线程,等待其他多个线程完成某件事情之后才能执行;CyclicBarrier : 多个线程互相等待,直到到达同一个同步点,再继续一起执行。

对于 CountDownLatch 来说,重点是“一个线程(多个线程)等待”,而其他的 N 个线程在完成“某件事情”之后,可以终止,也可以等待。而对于 CyclicBarrier,重点是多个线程,在任意一个线程没有完成,所有的线程都必须等待。

CountDownLatch 是计数器,线程完成一个记录一个,只不过计数不是递增而是递减,而 CyclicBarrier 更像是一个阀门,需要所有线程都到达,阀门才能打开,然后继续执行。

你可能感兴趣的:(面试题,java)