- AI大模型DreamShaper XL v2系列分享,适用于Stable Diffusion和ComfyUI
szboy2003
人工智能stablediffusionAI作画图像处理python视觉检测
DreamShaperXLv2TurboDPMpp_v2Turbo通过百度网盘分享的文件:DreamShaperXLv2TurboDPMpp_v2TurboDPMpp.safetensors链接:https://pan.baidu.com/s/1ja-9GrFPy7enGKAO-cUUFQ?pwd=5566提取码:5566–StableDiffusion放在models\Stable-diffus
- 手撕Diffusion系列 - 第八期(end) - Diffusion推理
小菜鸟博士
手撕Diffusion深度学习人工智能算法面试学习
手撕Diffusion系列-第八期(end)-Diffusion推理目录手撕Diffusion系列-第八期(end)-Diffusion推理DDPM原理图DDPM反向去噪DIffusion推理代码Part1引入相关库函数Part2定义去噪函数Part3测试参考DDPM原理图DDPM包括两个过程:前向过程(forwardprocess)和反向过程(reverseprocess),其中前向过程又称为扩
- 开放传神(OpenCSG)手撕Sora的Diffusion Transformer (DiT)算法
OpenCSG
transformer算法深度学习人工智能stablediffusion
“Sora的出现不是偶然,而是经过长期积累、反复试错及用户反馈的必然。”OpenAI尝试过递归网络、生成对抗网络、自回归Transformer及扩散模型。最终诞生了DiffusionTransformer。其充分利用了大语言模型Token的好处,让像素也能够被预测(Patches)。Sora的诞生不亚于2023年ChatGPT的出现,因为我们的世界是一个五彩斑斓的图像和视频组成。Sora通过社区和
- 深入浅出解析Stable Diffusion中U-Net网络
2301_78234743
java
题解|#数组中出现次数超过一半的数字#importjava.util.*;publicclassSolution{/***代码中的类名、方法名、参数名已经指定,请勿修改,24秋招腾讯QQ浏览器提前批一面一面(35分钟)先做个自我介绍你应该学过操作系统和计算机网络进程和线程UDP和TCP的区别UDP和TCP如何实现拥塞控制什么情况下用UDP,什么情况下用TCP题解|#牛牛学说话之-浮点数##incl
- 在Linux上安装Chrome浏览器时遇到的问题
花牧w
Linuxubuntuchrome
在Linux上安装Chrome浏览器时遇到的问题一、权限报错二、找不到文件报错三、架构不符报错四、依赖关系报错一、权限报错运行:dpkg-igoogle-chrome-stable_current_amd64-1.deb报错:dpkg:错误:所请求的操作需要超级用户权限处理方式:sudodpkg-igoogle-chrome-stable_current_amd64-1.deb[sudo]user
- Stable Diffusion:Python图像生成实战指南
AI绘画咪酱
stablediffusionpython人工智能AI作画AIGCai
前言今天要跟大家分享一个特别有趣的话题-如何使用Python和StableDiffusion来生成AI艺术作品。作为一名Python爱好者,我特别喜欢探索AI领域的新技术,而StableDiffusion则是最近特别火热的AI图像生成工具之一。1.StableDiffusion简介与环境配置StableDiffusion是一个强大的AI图像生成模型,它能够根据文字描述生成高质量的图像。在开始实战之
- [论文精读]Understanding Diffusion Models: A Unified Perspective
0x211
论文精读数学建模
发布链接:http://arxiv.org/abs/2208.11970文章详细讨论了扩散模型(DiffusionModels)作为一种生成模型的工作原理,并从多个角度解释其背后的数学机制。阅读原因:实验需要理解SD的数学建模过程数学层面更好的解释:diffusionmodel(一):DDPM技术小结(denoisingdiffusionprobabilistic)|莫叶何竹1.扩散模型简介扩散模
- 基于Stable Diffusion 3.5 Large模型的微调技术详解
zhangjiaofa
大模型图像生成模型微调
基于StableDiffusion3.5Large模型的微调技术详解引言StableDiffusion3.5Large(以下简称SD3.5)是近年来在生成式AI领域备受关注的一个模型,尤其在图像生成任务中表现出色。它基于扩散模型(DiffusionModel)的架构,能够生成高质量的图像,并且在文本到图像(Text-to-Image)任务中展现了强大的能力。然而,尽管SD3.5在通用图像生成任务中
- 在亚马逊云科技上用Stable Diffusion 3.5 Large生成赛博朋克风图片(上)
佛州小李哥
AWS技术科技stablediffusion人工智能亚马逊云科技awsai语言模型
背景介绍在2024年的亚马逊云科技re:Invent大会上提前预告的StableDiffusion3.5Large,现在已经在AmazonBedrock上线了!各位开发者们现在可以使用该模型,根据文本提示词文生图生成高质量的图片,并且支持多种图片风格生成,助力媒体、游戏、广告和零售等行业的开发者们加速概念艺术、视觉特效以及精修产品宣传图的生成创作。2024年10月,图像生成模型厂商Stabilit
- centOS8.2安装dooker、gitlab、Jenkins
月光一族吖
gitlabjenkins运维
一、安装dooker1、检查centOS的版本cat/etc/redhat-release2、安装gcc相关yum-yinstallgccyum-yinstallgcc-c++yuminstall-yyum-utils3、设置stable镜像仓库sudoyum-config-manager--add-repohttp://mirrors.aliyun.com/docker-ce/linux/cen
- Classifier Guidance 与 Classifier-Free Guidance
Adenialzz
stablediffusion
ClassifierGuidance与Classifier-FreeGuidanceDDPM终于把diffusion模型做work了,但无条件的生成在现实中应用场景不多,我们终归还是要可控的图像生成。本文简要介绍两篇关于diffusion模型可控生成的工作。其中Classifier-FreeGuidance的方法还是现在多数条件生成diffusion模型的主流思路。ClassifierGuidan
- Diffusion中guidance_scale 的理解
不当菜鸡的程序媛
Diffusion人工智能stablediffusion
guidance_scale是一个控制生成图像引导程度的参数。它的含义和使用与论文Imagen:PhotorealisticText-to-ImageDiffusionModelswithComposableConditions中的公式(2)的引导权重类似。1.Classifier-FreeGuidance的背景Classifier-FreeGuidance是一种在扩散模型中提高生成样本质量的方法
- CentOS7非root用户离线安装Docker及常见问题总结、加docker各类操作系统桌面程序下载地址
飞火流星02027
云计算K8SLinuxdocker离线安装docker离线安装包下载docker安装云原生k8sdockerdocker桌面程序下载地址
环境说明1、安装用户有sudo权限2、本文讲docker组件安装,不是桌面程序安装3、本文讲离线安装,不是在线安装下载1、下载离线安装包,并上传到$HOME/basic-tool目录下载地址:Indexoflinux/static/stable/x86_64/我下的这个:https://download.docker.com/linux/static/stable/x86_64/docker-20
- 【大模型】AutoDL部署AI绘图大模型Stable Diffusion使用详解
小码农叔叔
AI大模型实战与应用AutoDL部署AI绘图大模型AI绘图大模型AutoDL部署SDAI绘图大模型SD使用详解SD使用详解SD部署
目录一、前言二、AI绘图大模型概述2.1AI绘图大模型介绍2.2AI绘图大模型特点2.3AI绘图大模型优势三、主流的AI绘图大模型介绍3.1Midjourney3.1.1Midjourney介绍3.1.2Midjourney功能特点3.1.3Midjourney使用场景3.2StableDiffusion3.2.1StableDiffusion介绍3.2.2StableDiffusion特点3.2
- stable diffusion webui电商基础模型
Kun Li
多模态大语言模型stablediffusion
电商生成模型的产生主要有两个路子,1.训练微调;2.模型融合。下面这些是借鉴,帮助思考如何构建电商模型。电商必备的10款StablediffusionWebUI模型-知乎一、WFProduct电商场景这是一个专门为电商摄影场景训练的lora模型,可以生成各种极具设计感的场景图,效果逼真,无论是电商、海报、产品渲染还是空间布置上都能用得到,可以解决产品摄影空间布景困难、创意度不…https://zh
- stable diffusion 模型和lora融合
Kun Li
图像视频生成大模型stablediffusion
炜哥的AI学习笔记——SuperMerger插件学习-哔哩哔哩接下来学习的插件名字叫做SuperMerger,它的作用正如其名,可以融合大模型或者LoRA,一般来说会结合之前的插件LoRABlockWeight使用,在调整完成LoRA模型的权重后使用改插件进行重新打包。除了LoRA,Checkpoint也可以通过这个插件进行融合合并。实际上,目前市面上存在大量的Checkpoint模型都是经由合并
- 入门Stable-Diffusion-WebUI全过程
沙漠蓝色披头
Ai大模型stablediffusion
这里用的软件叫“stable-diffusion-webui”,严格意义上来说是一个基于StableDiffusion的开源项目。这个项目非常强大,把原本很难安装配置的开源项目做成了一个简单易操作的网页,后来又引入了插件系统,可以玩出很多花样。最重要的是这一切都免费且开源。安装stable-diffusion-webui需要事先做一些准备工作。一台带中高端显卡的电脑电脑可以流畅的访问github安
- 如何训练Stable Diffusion 模型
俊偉
AGIstablediffusion扩散模型训练AI炼丹
训练StableDiffusion模型是一个复杂且资源密集的过程,通常需要大量的计算资源(如GPU或TPU)和时间。StableDiffusion是一种基于扩散模型的生成式AI,能够根据文本提示生成高质量的图像。它的训练过程涉及多个步骤,包括数据准备、模型配置、训练参数调整等。以下是训练StableDiffusion模型的基本步骤和注意事项:1.环境准备1.1安装依赖项首先,确保你有一个适合深度学
- ARM架构下安装新版docker及docker-compose
运维小弟| srebro.cn
docker架构docker容器
一、常见CPU架构:二、环境信息CPU架构操作系统配置HUAWEIKunpeng9205220aarch64openEuler22.03(LTS-SP3)64C128g15T三、安装docker3.1二进制包下载docker-ce社区下载地址:wgethttps://mirrors.nju.edu.cn/docker-ce/linux/static/stable/aarch64/docker-27
- 全网最全Stable diffusion保姆级教程「安装-配置-画图」,小白必收藏!!
AI想象家
stablediffusionAI作画midjourney人工智能深度学习
随着chatgpt爆火之后,越来越多的人开始关注人工智能,人工智能相关的其他应用如AI绘画,也再次得到人们的关注。AI绘画的确很上头,最近几天小编也研究一下,这里把研究的过程以及中间遇到的问题整理一下,我这里遇到的问题,相信新入门的小白也会遇到,希望本文对你能有一定的帮助。给大家带来了全新保姆级教程资料包(文末可获取)目前常用的AI绘画工具主要有两种:stablediffusion和midjour
- docker离线安装及部署各类中间件(x86系统架构)
m0_67403143
面试学习路线阿里巴巴docker中间件系统架构
前言:此文主要针对需要在x86内网服务器搭建系统的情况一、docker离线安装1、下载docker镜像https://download.docker.com/linux/static/stable/x86_64/版本:docker-23.0.6.tgz2、将docker-23.0.6.tgz文件上传到服务器上面,这里放在了/home下3、创建docker.service文件#进入/etc/syst
- vid2vid-zero:使用Stable Diffusion进行零样本视频编辑
ScienceLi1125
3D视觉stablediffusion
Paper:WangW,JiangY,XieK,etal.Zero-shotvideoeditingusingoff-the-shelfimagediffusionmodels[J].arXivpreprintarXiv:2303.17599,2023.Introduction:UnreleasedCode:https://github.com/baaivision/vid2vid-zero目录一
- 开源AI图像工具—Stable Diffusion
蚂蚁在飞-
人工智能stablediffusion
StableDiffusion是一种基于深度学习的生成式模型,用于图像生成、图像修复和风格转换等任务。它是由StabilityAI和CompVis团队联合开发的。StableDiffusion在生成高质量图像方面表现出色,并且是开源的,可以自由使用和扩展。StableDiffusion的核心技术1.扩散模型(DiffusionModels):•基于概率生成模型。•从噪声中逐步反向生成清晰的图像。•
- 深入理解AIGC背后的核心算法:GAN、Transformer与Diffusion Models
忘梓.
杂文AIGC算法生成对抗网络
深入理解AIGC背后的核心算法:GAN、Transformer与DiffusionModels前言随着人工智能技术的发展,AIGC(AIGeneratedContent,人工智能生成内容)已经不再是科幻电影中的幻想,而成为了现实生活中的一种新兴力量。无论是自动生成文章、绘制图像、生成音乐还是创作视频,AIGC都在各个内容创作领域崭露头角。然而,这些“智能创作”的背后究竟依赖于哪些算法?今天,我们将
- Stable Diffusion 3(SD 3)模型分享
szboy2003
stablediffusion图像处理视觉检测AI作画
整理了StableDiffusion3(SD3)模型,分享如下:sd3_medium.safetensors链接:https://pan.baidu.com/s/1aYq0MTmKj0U9fBNexV-7sw?pwd=5566提取码:5566sd3_medium_incl_clips_t5xxlfp8.safetensors链接:https://pan.baidu.com/s/1cg3zESBk0
- 用deepin-wine6安装/运行exe程序的方法
deepin
一、建立deepin-wine6-stable环境对于新装的系统,首先需要安装一款应用商店里使用deepin-wine6-stable运行的wine应用,例如wine版微信或wine版QQ,并运行一下。这样,系统会自动建立deepin-wine6-stable环境,为后续安装其他exe程序奠定基础.二、安装exe程序以32位7-Zip的安装程序7z2107.exe(版本21.7.0.0)为例,该e
- Centos7.9 离线安装docker
有谁看见我的剑了?
dockerdocker容器运维
实验环境:[root@192~]#cat/etc/system-releaseCentOSLinuxrelease7.9.2009(Core)下载二进制压缩包a.官网下载地址:https://download.docker.com/linux/static/stable/x86_64/b.阿里云下载地址https://mirrors.aliyun.com/docker-ce/linux/stati
- 让创意在幻觉中肆虐: 认识Illusion Diffusion AI
程序员
人工智能新境界在不断发展的人工智能领域,一款非凡的新工具应运而生,它能将普通照片转化为绚丽的艺术品。敬请关注IllusionDiffusion,这是一个将现实与想象力完美融合的AI驱动平台,可创造出迷人的视错觉和超现实意境。AI算法的魔力所在IllusionDiffusion的核心是借助先进的AI模型,包括StableDiffusion和ControlNet,来解读用户输入的文本提示,并生成相应的
- python画图|同时输出二维和三维图
西猫雷婶
python开发语言
前面已经学习了如何输出二维图和三维图,部分文章详见下述链接:python画图|极坐标下的3Dsurface-CSDN博客python画图|垂线标记系列_如何用pyplot画垂直x轴的线-CSDN博客有时候也需要同时输出二位和三维图,因此有必要学习一下。【1】官网教程首先我们打开官网教程,链接如下。https://matplotlib.org/stable/gallery/mplot3d/mixed
- 【笔记】扩散模型(七):Latent Diffusion Models(Stable Diffusion)论文解读与代码实现
LittleNyima
DiffusionModels笔记stablediffusionAIGC人工智能
论文链接:High-ResolutionImageSynthesiswithLatentDiffusionModels官方实现:CompVis/latent-diffusion、CompVis/stable-diffusion这一篇文章的内容是LatentDiffusionModels(LDM),也就是大名鼎鼎的StableDiffusion。先前的扩散模型一直面临的比较大的问题是采样空间太大,学
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe