- Manus 一码难求,MetaGPT、OpenManus、Camel AI 会是替代方案吗?
全干程序员demo
技术热文人工智能
Manus一码难求,MetaGPT、OpenManus、CamelAI会是替代方案吗?一、Manus的现象与问题Manus作为一款号称“全球首个通用AI智能体”的产品,凭借其强大的功能和新颖的营销策略迅速走红。然而,其封闭的邀请码机制和高昂的使用门槛,让普通开发者望而却步。Manus的邀请码被炒至高价,甚至出现账号冻结等现象,这引发了用户对其技术壁垒和实际应用价值的质疑。二、MetaGPT、Ope
- LLM对齐方法作用:主要解决大型语言模型(LLMs)输出与人类价值观、需求和安全规范不一致的问题
ZhangJiQun&MXP
2021AIpython2024大模型以及算力2021数字交易数字资产语言模型安全人工智能机器学习自然语言处理算法
LLM对齐方法作用:主要解决大型语言模型(LLMs)输出与人类价值观、需求和安全规范不一致的问题对齐方法(AlignmentMethods)主要解决大型语言模型(LLMs)输出与人类价值观、需求和安全规范不一致的问题。其核心目标是让模型生成的内容更符合人类预期,同时确保伦理合规性和实用性。以下是对齐方法解决的具体问题及典型场景:1.安全性与伦理问题问题:基础LLMs可能生成有害内容(如暴力、歧视、
- 庖丁解java(一篇文章学java)
庖丁解java
java开发语言
(大家不用收藏这篇文章,因为这篇文章会经常更新,也就是删除后重发)一篇文章学java,这是我滴一个执念...当然,真一篇文章就写完java基础,java架构,java业务实现,java业务扩展,根本不可能.所以,这篇文章,就是一个索引,索什么呢?请看下文...关于决定开始写博文的介绍(一切故事的起点源于这一次反省)中小技术公司的软扩展(微服务扩展是否有必要?)-CSDN博客SpringCloud(
- 提出机器人自主学习新范式,深大团队最新顶会论文,刷新6大复杂任务SOTA
量子位
关注前沿科技量子位让机器人轻松学习复杂技能有新框架了!深圳大学大数据系统计算技术国家工程实验室李坚强教授团队联合鹏城国家实验室、北京理工莫斯科大学,提出了奖励函数与策略协同进化框架ROSKA。在多个高维度机器人任务上,在仅使用89%训练样本的情况下,比现有SOTA方法平均性能提升95.3%。众所周知,随着机器人技术的快速发展,其应用已渗透至日常生活和工业生产场景。然而在多自由度机器人控制领域,传统
- 基于asp.NET的病历管理系统 (源码+net+vue+部署文档+讲解等)
qq_1406299528
计算机毕业设计aspasp.netvue.js后端
收藏关注不迷路!!文末获取源码+数据库感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人文章目录前言程序资料获取一、项目技术二、项目内容和功能介绍三、核心代码数据库参考四、效果图五、资料获取前言博主介绍:✨全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,专注于Java/Python/小程序app/深度学
- Python 爬虫实战:电影评论数据抓取与自然语言处理
西攻城狮北
python爬虫开发语言
引言作为一名对电影数据和自然语言处理感兴趣的内容创作者,我决定利用Python爬虫技术抓取IMDb上的电影评论数据,并进行自然语言处理分析。这不仅可以帮助我们了解观众对电影的反馈,还能为电影制作方提供有价值的参考。一、项目背景IMDb(互联网电影数据库)是全球最大的电影数据库,用户可以在上面查看电影信息和用户评论。本项目旨在爬取IMDb上的电影评论,并对评论进行自然语言处理(NLP),以提取情感、
- 【AI热点】OpenAI新发布API技术深度洞察
碣石潇湘无限路
人工智能
以下内容基于对OpenAI最新发布的AgentAPI及相关工具的官方信息、技术演示和已有报道进行综合解读与深度分析,供您参考。本报告将围绕最新发布的ResponsesAPI(智能体核心新接口)、内置工具(websearch、filesearch、computeruse)、全新的AgentsSDK以及核心安全与可观测性机制,帮助您深入理解其原理、特性及应用价值。一、背景:为什么要推出新的AgentA
- 【数据结构】线性表----栈详解
Skrrapper
数据结构算法数据结构算法c语言
栈栈(Stack)是一种常见的数据结构,它具有**后进先出(LastIn,FirstOut,LIFO)**的特点。栈的运作类似于物理世界中的叠盘子:最新放上去的盘子最先被拿走,而最底部的盘子最后才能被取出。如果你先拿底下的盘子,那么就有可能出现整个盘子组全部倒塌碎落一地——这也就是所谓的栈出错。出栈和入栈栈有着先进后出的特点。所以它的出栈和入栈也遵循着这个特点。我们在存取元素的时候,一般是在栈顶进
- 数据结构--栈详解
梓色系
暑期打卡数据结构数据结构java开发语言
前言大家好呀,今天我们学习数据结构之栈篇,这是一种很简单的数据结构,今天我们将从概念,用法和模拟实现三个面开始学习一,概念和性质栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(LastInFirstOut)的原则。压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。出栈:栈的删除操作叫做出
- 使用Python爬取豆瓣用户信息:从入门到实战
Python爬虫项目
2025年爬虫实战项目python开发语言人工智能爬虫大数据
引言豆瓣作为一个知名的社交平台,拥有丰富的用户信息。对于数据分析师、研究人员或普通用户来说,获取豆瓣用户信息具有重要的价值。本文将详细介绍如何使用Python及其相关库来爬取豆瓣用户信息,并展示如何利用最新的技术手段来实现这一目标。1.准备工作在开始编写爬虫之前,我们需要准备一些工具和环境:Python3.x:确保你已经安装了Python3.x版本。Requests库:用于发送HTTP请求。Bea
- 【数字IC验证】博客内容全览
MoorePlus
数字IC验证百宝箱经验分享面试数字IC芯片验证SV
【导读】:数字IC验证百宝箱涵盖博主在实际工作中常用的技能与工具,包括但不限于SV、UVM、Formal、脚本(perl/python/shell)及EDA工具快速上手使用等。无论你是刚踏入职场的验证小白,还是希望回顾基础寻找跳槽机会的从业者,本专栏都能为你提供实用的技术支持,在达成目标的路上,助你一臂之力。“凡是能用钱买来的时间就是便宜的;凡是能用时间换来的注意力持续就是有价值的。”(附上超链接
- SDN技术解码:架构革新与数字化转型实践指南 ——从控制平面到AI融合的网络进化论
不想加班的码小牛
架构平面人工智能网络协议
一、引言:SDN如何重塑网络价值体系?在数字化浪潮下,传统网络架构的僵化性已成为制约业务创新的瓶颈。SDN(软件定义网络)通过解耦控制与转发平面,将网络从“黑盒设备”转变为“可编程服务”,为云计算、物联网等领域提供动态、智能的网络底座。例如,某金融企业通过SDN实现跨地域数据中心流量智能调度,业务故障恢复时间缩短至分钟级。二、SDN核心架构与技术原理1.三层架构:控制-转发-应用的协同生态•控制层
- SDN架构解密:控制面如何“指挥”万亿级网络? ——基于“大脑-四肢”模型的三层架构深度解析
不想加班的码小牛
网络架构人工智能ai
摘要本文以“大脑-四肢”类比SDN三层架构,揭示控制器如何通过全局视图管理、南向接口标准化(如OpenFlow)与北向API开放能力,实现对万亿级网络的集中化控制。文中包含OpenFlow协议代码示例、网络拓扑公式及架构图,力求呈现技术细节与实战价值。一、SDN架构的“大脑-四肢”隐喻SDN通过控制平面-数据平面-应用平面的三层架构,构建了网络控制的“中枢神经系统”:控制层(大脑):集中式控制器掌
- 孪生网络模型,当训练集与测试集共用一个数据集时,训练准确率为100%,而测试准确率仍在50%左右浮动
bug菌¹
全栈Bug调优(实战版)pytorch机器学习
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!问题描述【问题】孪生网络模型,测试效果异常:当训练集与测试集共用一个数据集(样本、标签完全相同)时,训练准确率为100%,而测试准确率仍在50%左右浮动(正常来说测试的都
- AI大模型学习路线及相关资源推荐
python游乐园
学习资源学习PythonAIAI编程人工智能
哈喽,大家好!本文为大家带来AI大模型学习路线及相关资源推荐,这对于学习掌握AI大模型很有帮助呦,希望大家多多点赞收藏~感谢~~1AI大模型的基础信息1.1什么是AI大模型AI大模型,即人工智能大型模型,是一种基于深度学习技术,具有海量参数、强大算力支持、能够处理和生成复杂数据的人工智能模型。1.2AI大模型的主要特点规模庞大:AI大模型通常包含海量的参数。例如,谷歌的BERT模型在最初发布时就有
- Java:AI 浪潮中的隐形支柱 —— 探秘 Java 在人工智能领域的独特地位
琢磨先生David
人工智能
引言在人工智能技术席卷全球的今天,当人们谈论AI开发时,Python、R语言、C++等工具总是最先被提及。然而在这个充满创新的领域,有一个"老兵"正悄然发挥着不可替代的作用——自1995年诞生至今的Java语言,凭借其独特的工程化基因,正在构建起AI世界的底层基础设施。本文将揭示Java如何在大数据、机器学习、企业级AI系统等领域持续创造价值。一、Java的AI基因解码跨平台优势的现代意义"一次编
- 论零信任架构在现代网络安全中的变革性作用
烁月_o9
安全web安全网络
论零信任架构在现代网络安全中的变革性作用摘要本文深入探讨零信任架构(ZTA)在网络安全领域的关键地位与创新价值。通过分析传统网络安全模型的局限性,阐述ZTA的核心原则、技术组件及实践应用,揭示其在应对复杂多变的网络威胁时,如何重塑安全理念与防护模式,为保障组织数字资产安全提供前瞻性的策略与方法。一、引言在数字化浪潮席卷全球的当下,网络边界的模糊性使传统基于边界防御的安全模型捉襟见肘。零信任架构应运
- 【大一新生必收藏系列】❤机器学习7大方面,30个数据集。纯干货分享❤
.Boss.
机器学习人工智能python算法开发语言笔记#大一新生
.记住了就可以跟同学装起来了嗷....目录.纯干货回归问题分类问题图像分类文本情感分析自然语言处理自动驾驶金融类...........纯干货..................在刚刚开始学习算法的时候,大家有没有过这种感觉,最最重要的那必须是算法本身!其实在一定程度上忽略了数据的重要性。而事实上一定是,质量高的数据集可能是最重要的!数据集在机器学习算法项目中具有非常关键的重要性,数据集的大小、质量
- PHP 日志系统的最佳搭档:一个 Go 写的远程日志收集服务
phpgo日志分析
之前折腾了一个PHP日志系统,终于能让项目的错误信息乖乖地记录到日志里了。但问题又来了:日志是存了,可我怎么知道它什么时候爆炸了?有些错误轻微到无关紧要,有些错误严重到能把整个系统送走,但如果我要知道这些错误,我得SSH进服务器,然后手动去翻日志,效率低得要死。而且,多个服务器运行着同样的代码,有的报错,有的没事,我根本不知道到底哪里出了问题。于是,为了在bug出现的时候第一时间收到消息,而不是等
- 定义产品成功的核心指标都有哪些
产品管理系统
在产品管理和运营过程中,定义产品成功的核心指标至关重要。这些核心指标包括用户满意度、用户留存率、净推荐值(NPS)、客户终身价值(CLV)、活跃用户数(MAU/DAU)、客户获取成本(CAC)等。尤其是用户满意度,因为它直接反映了用户对产品的认可程度,进而影响到用户的留存和口碑传播。一、用户满意度(CustomerSatisfaction,CSAT)用户满意度是衡量用户对产品或服务满意程度的关键指
- C++设计模式-观察者模式:从基本介绍,内部原理、应用场景、使用方法,常见问题和解决方案进行深度解析
牵牛老人
C++专栏c++设计模式观察者模式
一、基本介绍1.1模式定义与核心思想观察者模式(ObserverPattern)是一种行为型设计模式,它定义了对象间一对多的依赖关系。当被观察对象(Subject)状态改变时,所有依赖它的观察者(Observer)都会自动收到通知并更新。这种模式类似于报纸订阅机制——报社发布新刊时,所有订阅者都会收到最新报纸。1.2模式价值体现解耦利器:将事件发布者与订阅者解耦,提升系统扩展性动态响应:支持运行时
- 深入解析React 18核心特性:构建未来级Web应用的全面指南
斯~内克
react知识点前端react.js前端框架
一、React18的里程碑意义React18作为近年来最具革命性的版本更新,标志着前端开发正式进入并发渲染时代。这个版本不仅带来了底层架构的革新,更重新定义了现代Web应用的性能标准与开发范式。根据npm官方统计,React18发布首周下载量突破1800万次,GitHub星标数新增3.4万,充分展现了开发者社区对其技术价值的认可。二、架构革命:并发模式深度解析2.1并发渲染原理//传统同步渲染模式
- 如何用爬虫根据关键词获取商品列表:一份简单易懂的代码示例
API小爬虫
爬虫
在当今数字化时代,网络爬虫已经成为数据收集和分析的强大工具。无论是市场调研、价格监控还是产品分析,爬虫都能帮助我们快速获取大量有价值的信息。今天,我们就来探讨如何通过编写一个简单的爬虫程序,根据关键词获取商品列表。以下是一个基于Python语言的代码示例,适合初学者学习和实践。一、准备工作在开始编写爬虫之前,我们需要准备以下工具和库:Python环境:确保你的电脑上安装了Python。推荐使用Py
- 安全测试数据的分析、报告及业务应用
蚂蚁质量
安全测试质量体系安全网络web安全
一、安全测试指标与测量目标在风险分析和管理流程中,有效运用安全测试数据的前提是准确定义安全测试指标和测量目标。例如,通过统计安全测试中发现的漏洞总数,能够量化应用程序的安全状态,还可据此设定软件安全测试的目标,如在应用程序投入生产环境前,将漏洞数量降低至可接受的最低限度。另一个具有管理价值的目标是将应用程序的安全状态与安全基线进行对比,以此评估应用安全流程的改进情况。假设安全指标基线对应的是仅完成
- 强化学习-Chapter2-贝尔曼方程
Rsbs
算法机器学习概率论
强化学习-Chapter2-贝尔曼方程贝尔曼方程推导继续展开贝尔曼方程的矩阵形式状态值的求解动作价值函数与状态价值函数的关系贝尔曼方程推导Vπ(s)=E[Gt∣St=s]=E[rt+1+(γrt+2+…)∣St=s]=E[rt+1+γGt+1∣St=s]=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(Rs→s′a+γE[Gt+1∣St+1=s′])=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(R
- 我与DeepSeek读《大型网站技术架构》(14)- 架构师领导艺术
诺亚凹凸曼
架构
文章目录架构师领导艺术以人为本:激发团队潜能开放式协作:打破架构“所有权”壁垒妥协的艺术:聚焦核心目标成就他人:构建持续进化团队高效沟通:建立技术与人性的平衡架构师领导艺术本章聚焦架构师如何通过团队协作与领导策略构建高效技术体系,核心思想可归纳为以下维度:以人为本:激发团队潜能核心理念:构建优秀团队的关键是激发成员自我驱动力而非依赖流程管控。目标驱动:通过清晰的愿景(如产品蓝图)使团队理解工作价值
- 数字孪生对于新基建的价值浅析,算是抛砖引玉。
大牛工控设计师
人工智能信息可视化前端
数字孪生(DigitalTwin)作为一项融合物理世界与数字世界的关键技术,在新基建中扮演着虚实协同、智能决策、全生命周期管理的核心角色,其价值贯穿于基础设施的设计、建设、运维到优化全流程。一、核心价值:虚实映射与智能决策实时动态映射通过传感器、IoT设备实时采集物理实体(如工厂、城市、电网)的运行数据,构建高精度虚拟模型,实现**“所见即所控”**的透明化管理。模拟预测与优化利用AI和大数据分析
- HarmonyNext实战:基于ArkTS的高性能实时音视频通信应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能实时音视频通信应用开发引言在HarmonyNext生态系统中,实时音视频通信是一个极具挑战性和实用价值的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的实时音视频通信应用,涵盖从基础概念到高级优化的完整流程。我们将通过一个实际的案例——实时视频会议应用,来展示如何在HarmonyNext平台上实现高效的音视频通信。1.项目概述1.1目标开
- 【2025年37期免费获取股票数据API接口】实例演示五种主流语言获取股票行情api接口之沪深指数实时数据获取实例演示及接口API说明文档
不会写代码的码农农
pythonjava开发语言股票api股票数据股票数据接口
在近一至两年期间,股票量化分析逐步成为备受关注的热门议题。对于投身于该领域工作而言,首要步骤便是获取全面且精准的股票数据。无论是实时交易数据、历史交易记录、财务数据,亦或是基本面信息,这些数据均是开展量化分析过程中不可或缺的宝贵资源。我们的核心任务在于从这些数据中提炼出具有价值的信息,从而为投资策略提供坚实有力的指导。在数据探索进程中,我尝试运用了多种方法,涵盖自编网易股票页面爬虫程序、申万行业数
- 负载均衡中四层和七层协议区别
LeonNo11
nginx负载均衡运维
https://www.cnblogs.com/liuzhongkun/p/17046936.html在负载均衡(LoadBalancing)中,四层(L4)负载均衡和七层(L7)负载均衡是两种常见的方式,它们的区别主要体现在工作层级、处理方式、功能特性等方面。1.L4(四层)负载均衡基于TCP/UDP传输层的负载均衡协议层:工作在OSI模型的第4层(传输层)。工作方式:主要依据IP地址和端口号进
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟