在源码分析前我们需要了解其源码的组成结构:
axios
发送请求主要分为axios.get\post...axios({options})等实现方式,实现入口文件为axios.js:
function createInstance(defaultConfig) {
var context = new Axios(defaultConfig);
// instance指向了request方法,且上下文指向context,所以可以直接以 axios(option) 方式调用
// Axios.prototype.request 内对第一个参数的数据类型判断,使我们能够以 instance(url, option) 方式调用
var instance = bind(Axios.prototype.request, context);
// 把Axios.prototype上的方法扩展到instance对象上,
// 并指定上下文为context,这样执行Axios原型链上的方法时,this会指向context
utils.extend(instance, Axios.prototype, context);
// Copy context to instance
// 把context对象上的自身属性和方法扩展到instance上
// 注:因为extend内部使用的forEach方法对对象做for in 遍历时,只遍历对象本身的属性,而不会遍历原型链上的属性
// 这样,instance 就有了 defaults、interceptors 属性。
utils.extend(instance, context);
return instance;
}
// Create the default instance to be exported 创建一个由默认配置生成的axios实例
var axios = createInstance(defaults);
// Factory for creating new instances 扩展axios.create工厂函数,内部也是 createInstance
axios.create = function create(instanceConfig) {
return createInstance(mergeConfig(axios.defaults, instanceConfig));
};
// Expose all/spread
axios.all = function all(promises) {
return Promise.all(promises);
};
axios.spread = function spread(callback) {
return function wrap(arr) {
return callback.apply(null, arr);
};
};
module.exports = axios;
主要核心是 Axios.prototype.request
,各种请求方式的调用实现都是在 request
内部实现的, 简单看下 request
的逻辑
Axios.prototype.request = function request(config) {
// Allow for axios('example/url'[, config]) a la fetch API
// 判断 config 参数是否是 字符串,如果是则认为第一个参数是 URL,第二个参数是真正的config
if (typeof config === 'string') {
config = arguments[1] || {};
// 把 url 放置到 config 对象中,便于之后的 mergeConfig
config.url = arguments[0];
} else {
// 如果 config 参数是否是 字符串,则整体都当做config
config = config || {};
}
// 合并默认配置和传入的配置
config = mergeConfig(this.defaults, config);
// 设置请求方法
config.method = config.method ? config.method.toLowerCase() : 'get';
/*
something... 此部分会在后续拦截器单独讲述
*/
};
// 在 Axios 原型上挂载 'delete', 'get', 'head', 'options' 且不传参的请求方法,实现内部也是 request
utils.forEach(['delete', 'get', 'head', 'options'], function forEachMethodNoData(method) {
Axios.prototype[method] = function(url, config) {
return this.request(utils.merge(config || {}, {
method: method,
url: url
}));
};
});
// 在 Axios 原型上挂载 'post', 'put', 'patch' 且传参的请求方法,实现内部同样也是 request
utils.forEach(['post', 'put', 'patch'], function forEachMethodWithData(method) {
Axios.prototype[method] = function(url, data, config) {
return this.request(utils.merge(config || {}, {
method: method,
url: url,
data: data
}));
};
});
request
入口参数为config
,可以说config
贯彻了axios
的一生
axios
中的 config
主要分布在这几个地方:
defaults.js
config.method
默认为 get
createInstance
方法创建 axios
实例,传入的config
request
方法,传入的 config
// axios.js
// 创建一个由默认配置生成的axios实例
var axios = createInstance(defaults);
// 扩展axios.create工厂函数,内部也是 createInstance
axios.create = function create(instanceConfig) {
return createInstance(mergeConfig(axios.defaults, instanceConfig));
};
// Axios.js
// 合并默认配置和传入的配置
config = mergeConfig(this.defaults, config);
// 设置请求方法
config.method = config.method ? config.method.toLowerCase() : 'get';
下面重点看看request
方法:
Axios.prototype.request = function request(config) {
/*
先是 mergeConfig ... 等,不再阐述
*/
// Hook up interceptors middleware 创建拦截器链. dispatchRequest 是重中之重,后续重点
var chain = [dispatchRequest, undefined];
// push各个拦截器方法 注意:interceptor.fulfilled 或 interceptor.rejected 是可能为undefined
this.interceptors.request.forEach(function unshiftRequestInterceptors(interceptor) {
// 请求拦截器逆序 注意此处的 forEach 是自定义的拦截器的forEach方法
chain.unshift(interceptor.fulfilled, interceptor.rejected);
});
this.interceptors.response.forEach(function pushResponseInterceptors(interceptor) {
// 响应拦截器顺序 注意此处的 forEach 是自定义的拦截器的forEach方法
chain.push(interceptor.fulfilled, interceptor.rejected);
});
// 初始化一个promise对象,状态为resolved,接收到的参数为已经处理合并过的config对象
var promise = Promise.resolve(config);
// 循环拦截器的链
while (chain.length) {
promise = promise.then(chain.shift(), chain.shift()); // 每一次向外弹出拦截器
}
// 返回 promise
return promise;
};
拦截器interceptors
是在构建axios
实例化时就构建的属性:
function Axios(instanceConfig) {
this.defaults = instanceConfig;
this.interceptors = {
request: new InterceptorManager(), // 请求拦截
response: new InterceptorManager() // 响应拦截
};
}
InterceptorManager
构造函数如下:
// 拦截器的初始化 其实就是一组钩子函数
function InterceptorManager() {
this.handlers = [];
}
// 调用拦截器实例的use时就是往钩子函数中push方法
InterceptorManager.prototype.use = function use(fulfilled, rejected) {
this.handlers.push({
fulfilled: fulfilled,
rejected: rejected
});
return this.handlers.length - 1;
};
// 拦截器是可以取消的,根据use的时候返回的ID,把某一个拦截器方法置为null
// 不能用 splice 或者 slice 的原因是 删除之后 id 就会变化,导致之后的顺序或者是操作不可控
InterceptorManager.prototype.eject = function eject(id) {
if (this.handlers[id]) {
this.handlers[id] = null;
}
};
// 这就是在 Axios的request方法中 中循环拦截器的方法 forEach 循环执行钩子函数
InterceptorManager.prototype.forEach = function forEach(fn) {
utils.forEach(this.handlers, function forEachHandler(h) {
if (h !== null) {
fn(h);
}
});
}
请求拦截器方法是被 unshift
到拦截器中,响应拦截器是被push
到拦截器中的。最终它们会拼接上一个叫dispatchRequest
的方法被后续的 promise
顺序执行;因此有如下结论: