目录:
第一章 导言
第二章 原则与定义
第三章 科学教学标准
第四章 科学教师专业进修标准
第五章 科学教育中评价
第六章 科学内容标准
第七章 科学教育大纲标准
第八章 科学教育系统标准
结束语
第2章 原则与定义
Principles and Definitions
编撰《国家科学教育标准》有几条指导原则。这些原则是:
- 科学是面向所有学生的。
- 学习科学是种能动的过程。
- 学校的科学要反映作为当代科学实践之特点的理性传统与文化传统。
- 改进科学教育是牵一发而动全身的教育改革的一个组成部分。
The development of the National Science Education Standards was guided by certain principles. Those principles are
□ Science is for all students.
□ Learning science is an active process.
□ School science reflects the intellectual and cultural traditions that characterize the practice of contemporary science.
□ Improving science education is part of systemic education reform.
将这些原则具体化到某些标准之中时难免遭到抵制。这些原则在应用于学校的科学大纲和科学课堂教学的时候,也会遭到抵制。在下面,我们要对这些原则详细地作一阐释,说明一下有关的一些困难之所在。
Tension inevitably accompanied the incorpora ti on of these principles into standards. Tension also will arise as the principles are applied in s ch ool science programs and classrooms. The fo ll owing discussion elaborates upon the principles and clarifies some of the associated difficulties.
原则1 科学是面向所有学生的。
这一原则也就是公平与优异的原则。我们学校里的科学必须面向所有的学生:所有的学生,不问其年龄、性别、文化背景或族裔背景,不论他们有何残疾、有何志向,也不管他们对学科学怀有什么兴趣、受到了什么激励,都应该有机会接受科学教育以使自己具有高度的科学素养。
This principle is one of equity and excellence.Science in our schools must be for all students: All students, regardless of age,sex, cultural or ethnic background, disabilities, aspirations, or interest and motivation in science, should have the opportunity to attain high levels of scientific literacy.
这部标准认定,所有的学生都应该被赋予学习科学这样的具有挑战性的机会,因此,这部标准规定了所有的学生都应该有的认识水准和都应该具备的各种能力。这部标准在科学教育中所要防止的,主要是某些人——例如某些人口群体——学习科学的欲望受到压制、他们学习科学的机会甚至被剥夺的现象。
The Standards assume the inclusion of all students in challenging science learning opportunities and define levels of understanding and abilities that all should develop.They emphatically reject any situation in science education where some people-for example members of certain populations are discouraged from pursuing science and excluded from opportunities to learn science.
科学教育之优异原则体现在我们这样的理想之中:我们只要能把学习的机会毫无例外地提供给每一个学生,那么每一个学生就都能获得对科学的掌握。内容标准描述的是学生们学习的最后结果——学生们应该掌握的东西和能够做的事情,而不是学生们获取这些结果时所要采取的方式。学生们在回答有关自然界的问题时他们对自然界的理解方式和深度都会有所不同。学生们取得这些最后结果的速度也会有所不同,有些学生早一些,有些学生则要晚一些。但是,所有的学生在这些年中都应有机会通过多种学习途径达到这部标准所规定的认识水准和知识水平。
Excellence in science education embodies the ideal that all students can achieve understanding of science if they are given the opportunity. The content standards describe outcomes—what students should understand and be able to do, not the manner in which students will achieve those outcomes. Students will achieve understanding in different ways and at different depths as they answer questions about the natural world. And students will achieve the outcomes at different rates, some sooner than others. But all should have opportunities in the form of multiple experiences over several years to develop the understanding associated with the Standards.
科学是面向所有学生的这样一个原则,无论是对于大纲的制定还是对于教育系统的本身,都意味着有多方面的要求。特别是,在资源的分配方面必须得确保,这部标准不能把地位优越的学生与地位不很有利的学生间在获得学习机会方面目前存在着的差别给进一步拉大。
The commitment to science for all students has implications for both program design and the education system. In particular, resources must be allocated to ensure that the Standards do not exacerbate the differences in opportunities to learn that currently exist between advantaged and disadvantaged students.
原则2 学习科学是种能动的过程。
LEARNING SCIENCE IS ANACTIVE PROCESS.
学习科学是学生们要亲自动手做而不是要别人做给他们看的事情。在学习科学的过程中,学生们需要描述物体和作用过程,提出问题,获取知识,对自然现象作出解释,以多种不同方式对所作解释进行检验,最后是把自己的看法传递给别的人。
Learning science is something students do, not something that is done to them. In learning science, students describe objects and events, ask questions, acquire knowledge, construct explanations of natural phenomena, test those explanations in many different ways, and communicate their ideas to others.
在《国家科学教育标准》中,“能动的过程”一语指的是体与脑的共同活动。光是动手活动还不够——学生们还必须有动脑的活动。学习科学是学生们要亲自动手做而不是要别人做给他们看的事情。教学必须让学生们参与以探究为目的的研究活动,使他们同老师和同学一起相互启发相互促进。学生们需要将他们目前所掌握的科学知识同他们从多种渠道获得的科学知识联系起来;他们要把科学内容应用于新的问题里去;他们要参与解决问题,参与做计划,参与决策,参与小组讨论;他们还要参与跟能动的学习方法在原则上是完全一致的评价活动。
In the National Science Education Standards, the term “active process” implies physical and mental activity. Hands-on activities are not enough—students also must have “minds-on” experiences. Science teaching must involve students in inquiry oriented investigations in which they interact with their teachers and peers. Students establish connections between their current knowledge of science and the scientific knowledge found in many sources; they apply science content to new questions; they engage in problem solving, planning, decision making, and group discussions; and they experience assessments that are consistent with an active approach to learning.
强调能动地学习科学就意味不再把重点放在教师传授知识、讲解科学题目这样一套传统做法上。依照传统,教师显然得把教科书里的那些题目、科学词语和各方面知识都面面俱到地讲解一遍,那样一种做法同要使学生们在理解的基础上来学习科学知识的这个中心目标是完全背道而驰的。
Emphasizing active science learning means shifting emphasis away from teachers presenting information and covering science topics. The perceived need to include all the topics, vocabulary, and information in textbooks is in direct conflict with the central goal of having students learn scientific knowledge with understanding.
原则3 学校的科学要反映作为当代科学实践之特点的理性传统与文化传统。
学生们要获得有关科学与自然界的丰富知识,就必须熟悉科学探究的手段、使用证据的规则、形成问题的方式和提出解释的方法。使学生了解科学与数学的关系以及科学与技术的关系、认清科学的性质也应是对学生进行科学教育的一个组成部分。
To develop a rich knowledge of science and the natural world,students must become familiar with modes of scientific inquiry, rules of evidence , ways of formulating questions , and ways of proposing explanations . The relation of science to mathematics and to technology and an understanding of the nature of science should also be part of their education.
学生们应该加深对什么样的东西是科学、什么样的东西不是科学、科学能够做什么、科学不能做什么以及科学如何在文化中起作用这一系列问题的认识。
Students should develop an understanding of what science is,what science is not, what science can and cannot do, and how science contributes to culture.
《国家科学教育标准》的一个明确目标是在美国建立一个有很高科学素养的社会。良好的科学素养的一个重要方面,是对科学主题(也就是同物质科学、生命科学和地球科学特别相关的知识)知晓得比较多,理解得比较深。良好的科学素养还包括认清科学的性质、科学事业以及科学在社会和个人生活中所起的作用。《国家科学教育标准》认为,有许许多多个人都对科学的传统作出了贡献,从历史的角度看,科学已经成为许许多多不同文化中的一种实践活动。
An explicit goal of the National Science Education Standards is to establish high levels of scientific literacy in the United States. An essential aspect of scientific literacy is greater knowledge and understanding of science subject matter, that is, the knowledge specifically associated with the physical, life , and earth sciences.S cientific literacy also includes understanding the nature of science, the scientific enterprise,and the role of science in society and personal life. The Standards recognize that many individuals have contributed to the traditions of science and that, in historical perspective, science has been practiced in many different cultures.
科学是格物致知的一种路径,其基本特点是以实证为判别尺度、以逻辑作论辩的武器、以怀疑作审视的出发点。学生们应该加深对什么样的东西是科学、什么样的东西不是科学、科学能够做什么、科学不能做什么以及科学如何在文化中起作用这一系列问题的认识。
Science is a way of knowing that is characterized by empirical criteria, logical argument , and skeptical review. Students should develop an understanding of what science is, what science is not, what science can and cannot do, and how science contributes to culture.
原则4 改进科学教育是牵一发而动全身的教育改革的一个组成部分。
IMPROVING SCIENCE EDUCATION IS PART OF SYSTEMIC EDUCATION REFORM.
国家的目标和国家的标准有助于州和地方发起的那类影响全局的改革,国家的改革工作和地方上的改革工作是相辅相成的。在较大的教育系统内,我们可以把科学教育视作一个子系统,其组元有的是与其他子系统的组元共用的,有的组元是它独有的。这些组元包括学生与教师;有校长、监理和校董会的学校;高等院校中的教师教育大纲;教科书和教科书出版商;家长与学生两大群体;科学家与工程师;科学博物馆;工商业界人士;立法人员。要把上述各方面都有效地调动到改进面向全体学生的科学教育这一重要工作上来,就需要统一目标、统一构想,而《国家科学教育标准》就可以把我们的目标和构想统一起来,从而可以确保这场长期的改革得以步调统一、首尾相贯。
National goals and standards contribute to state and local systemic initiatives,and the national and local reform efforts complement each other.Within the larger education system, we can view science education as a subsystem with both shared and unique components. The components include students and teachers; schools with principals, superintendents, and school boards; teacher education programs in colleges and universities; textbooks and textbook publishers; communities of parents and of students; scientists and engineers;science museums; business and industry; and legislators. The National Science Education Standards provide the unity of purpose and vision required to focus all of those components effectively on the important task of improving science education for all students, supplying a consistency that is needed for the long term changes required.
《国家科学教育标准》中的一些观点和用语
Perspectives and Terms in the National Science Education Standards
诸如“有科学素养”、“科学内容和科学课程”等等用语虽然经常见诸教育讨论和大众报刊之中而又都没有作明确的定义,但是这些用语在《国家科学教育标准》中使用的时候则都是有特定的含义的。
Although terms such as “scientific literacy” and “science content and curriculum” frequently appear in education discussions and in the popular press without definition , those terms have a specific meaning as used in the National Science Education Standards.
有科学素养
所谓有科学素养是指了解和深谙进行个人决策、参与公民事务和文化事务、从事经济生产所需的科学概念和科学过程。有科学素养还包括一些特定门类的能力。在《国家科学教育标准》中,内容标准给有科学素养作过定义。
Scientific literacy is the knowledge and understanding of scientific concepts and processes required for personal decision making, participation in civic and cultural affairs, and economic productivity. It also includes specific types of abilities. In the National Science Education Standards, the content standards define scientific literacy.
有科学素养就意味一个人对日常所见所历的各种事物能够提出、能够发现、能够回答因好奇心而引发出来的一些问题。有科学素养就意味一个人已有能力描述、解释甚至预言一些自然现象。有科学素养就意味一个人能读懂通俗报刊刊载的科学文章,能参与就有关结论是否有充分根据的问题所作的社交谈话。有科学素养就意味一个人能识别国家和地方决定所赖以为基础的科学问题,并且能提出有科学技术根据的见解来。有科学素养的公民应能根据信息源和产生此信息所用的方法来评估科学信息的可靠程度。有科学素养还意味有能力提出和评价有论据的论点,并且能恰如其分地运用从这些论点得出的结论。
Scientific literacy means that a p erson can ask, find, or determine answers to questions derived from curiosity about e veryday experiences.It means that a person has the ability to describe, explain,and predict natural phenomena. Scientific literacy entails being able to read with understanding articles about science in the popular press and to engage in social conversation about the validity of the conclusions. Scientific literacy implies that a person can identify scientific issues underlying national and local decisions and express positions that are scientifically and technologically informed.A literate citizen should be able to evaluate the quality of scientific information on the basis of its source and the methods used to generate it. Scientific literacy also implies the capacity to pose and evaluate arguments based on evidence and to apply conclusions from such arguments appropriately.
不同的人会以不同的方式表现出自己的科学素养,例如能恰当地使用技术术语,或者能运用科学的概念和科学的过程等等。每一个人的这种素养在不同的领域中也会有所不同,例如对生命科学的概念和术语可能懂得多一点,而对物质科学的概念和术语可能懂得少一点。
Individuals will display their scientific literacy in different ways, such as appropriately using technical terms, or applying scientific concepts and processes. And individuals often will have differences in literacy in different domains, such as more understanding of life- science concepts and words, and less understanding of physical- science concepts and words.
有科学素养的程度和形式并不是一成不变的,其程度上的由低而高、修养面的由窄趋宽是发生在人的一生之中,而不是只发生在就学的年代。但是人在早期确立起的对科学的态度以及价值观念,对其成年时在科学素养方面所能达到的境界则会有决定性影响。
Scientific literacy has different degrees and forms; it expands and deepens over a lifetime, not just during the years in school. But the attitudes and values established toward science in the early years will shape a person’s development of scientific literacy as an adult.
内容和课程
See Program Standard B
学校科学的内容,广义地说,包括在科学方面具体地应该了解的知识、应该懂得的道理和应该会做的事情。内容标准并不是一种科学课程。课程是传授内容的方式:它包括课堂所讲内容的结构、组织安排、轻重处理及传授方式。
The content of school science is broadly defined to include specific capacities , understandings , and abilities in science . The content standards are not a science curriculum.Curriculum is the way content is delivered:It includes the structure,organization,balance, and presentation of the content in the classroom.
内容标准不是所要教授的科学课,不是教程,不是学习进度,也不是学校科学大纲。内容标准所描述的各部分科学内容可以依各种不同的强调点和不同的视角组织成多种不同的课程。内容标准的组织格局并不是准备作为课程来用的;科学概念、科学过程和科学题目的范围、顺序和协调都留给科学大纲的课程的设计者与编制者来自行决定。
The content standards are not science lessons, classes, courses of study, or school science programs. The components of the science content described can be organized with a variety of emphases and perspectives into many different curricula. The organizational schemes of the content standards are not intended to be used as curricula;instead,the scope, sequence , and coordination of concepts, processes, and topics are left to those who design and implement curricula in science programs.
课程常常会把来自不同的学科领域——例如生命科学和物质科学——的一些题目、来自不同的内容标准——例如生命科学和从个人角度和社会角度看的科学——的一些题目以及来自不同的学校学习科目——例如科学与数学、科学与语言艺术或科学与历史——的一些题目集于一身。
Curricula often will integrate topics from different subject-matter areas--such as life and physical sciences--from different content standards--such as life sciences and sciscience in personal and social perspectives--and from different school subjects--such as science and mathematics, science and language arts, or science and history.
有科学素养就意味一个人能识别国家和地方决定所赖以为基础的科学问题,并且能提出有科学技术根据的见解来。
Scientific literacy implies that a person can identify scientific issues underlying national and local decisions and express positions that are scientifically and technologically informed.
知识和领悟能力
KNOWLEDGE AND UNDERSTANDING.
实施《国家科学教育标准》意味要获取科学知识,要培养领悟科学的能力。科学知识指的是科学事实、科学概念、科学原理、科学定律、科学理论和科学模型,科学知识是可以通过多种途径来获取的。一个人要领悟科学就得将多种多样的知识——包括科学上的各种思想观念、这种思想观念与那种思想观念之间的相互关联、存在此种相互关联的缘由、运用这些思想观念来解释和预测其他自然现象的方式以及将此类思想观念运用于许许多多事情上去的方式等——综合在一起。领悟能力包括运用知识的能力,而要能够运用知识就要能分辨什么是科学思想,什么不是科学思想。培养领悟能力的先决条件是,学生们对科学上的思想观念要有追根问底的极大欲望,对自然界要有多方面的经验。
Implementing the National Science Education Standards implies the acquisition of scientific knowledge and the development of understanding. Scientific knowledge refers to facts, concepts, principles,laws, theories, and models and can be acquired in many ways. Understanding science requires that an individual integrate a complex structure of many types of knowledge, including the ideas of science, relationships between ideas, reasons for these relationships, ways to use the ideas to explain and predict other natural phenomena, and ways to apply them to many events. Understanding encompasses the ability to use knowledge, and it entails the ability to distinguish between what is and what is not a scientific idea. Developing understanding presupposes that students are actively engaged with the ideas of science and have many experiences with the natural world.
探究
科学探究指的是科学家们用以研究自然界并基于此种研究获得的证据提出种种解释的多种不同途径。科学探究也指的是学生们用以获取知识、领悟科学的思想观念、领悟科学家们研究自然界所用的方法而进行的各种活动。
Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work. Inquiry also refers to the activities of students in which they develop knowledge and understanding of scientific ideas, as well as an understanding of how scientists study the natural world.
探究是一种有多侧面的活动,需要做观察;需要提出问题;需要查阅书刊及其他信息源以便弄清楚什么情况已经是为人所知的东西;需要设计调研方案;需要根据实验证据来检验已经为人所知的东西;需要运用各种手段来搜集、分析和解读数据;需要提出答案、解释和预测;需要把研究结果告之于人。探究需要明确假设,需要运用判断思维和逻辑思维,需要考虑可能的其他解释。学生们在学习探知自然界的科学方法时将会参与科学探究活动中的某些方面的工作,但是学生们也应该培养自己从事完整的探究活动的能力。
Inquiry is a multifaceted activity that involves making observations; posing questions;examining books and other sources of information to see what is already known;planning investigations; reviewing what is already known in light of experimental evidence;using tools to gather, analyze, and interpret data; proposing answers, explanations,and predictions; and communicating the results.Inquiry requires identification of assumptions, use of critical and logical thinking, and consideration of alternative explanations.Students will engage in selected aspects of inquiry as they learn the scientific way of knowing the natural world, but they also should develop the capacity to conduct complete inquiries.
这部标准虽然强调探究,但是这不能解释为我们建议科学教学只应取探究的方式。教师们应该运用不同的策略设法使学生们掌握内容标准所描述的知识,弄懂所描述的道理,学会所描述的技能。只动手不动脑的科学活动无法达到探究的目的,从书本中学习科学与科学探究也不能同日而语。要掌握第六章中所描述的那些应该弄懂的东西和应该学会的技能,靠任何单一的教学策略或学习活动都是无法办到的。
Although the Standards emphasize inquiry, this should not be interpreted as recommending a single approach to science teaching. Teachers should use different strategies to develop the knowledge, understandings, and abilities described in the content standards. Conducting hands-on science activities does not guarantee inquiry,nor is reading about science incompatible
with inquiry. Attaining the understandings and abilities described in Chapter 6 cannot be achieved by any single teaching strategy or learning experience.
科学和技术
这部标准所使用的科学和技术两语,其间的根本区别在于二者的目标有所不同:科学的目标是探知自然界,而技术的目标是对这个世界加以改造使之适应人类之需。以设计为特点的技术在这部标准中是同以探究为特点的科学相互并存的。
As used in the Standards, the central distinguishing characteristic between science and technology is a difference in goal: The goal of science is to understand the natural world, and the goal of technology is to make modifications in the world to meet human needs.Technology as design is included in the Standards as parallel to science as inquiry.
技术与科学是密切相关的。一个单一性的问题常常包含科学和技术这两个方面。对自然界的种种问题要作出回答的需要导致技术产品的研制;技术上的种种需要又可促进科学研究工作的开展。技术产品,从较为简单的铅笔到比较复杂的计算机,可以为我们提供一些手段和工具,推动我们对自然现象的研究工作。
Technology and science are closely related. A single problem often has both scientific and technological aspects. The need to answer questions in the natural world drives the development of technological products ; moreover, technological needs can drive scientific research. And technological products , from pencils to computers, provide tools that promote the understanding of natural phenomena.
在这部标准里,“技术”一语的用法不要同“教学技术”一语发生混淆,后者指的是为学生和教师们从事探究、领悟科学而提供的像计算机这样的生动手段。
The use of “technology” in the Standards is not to be confused with “ instructional technology,” which provides students and teachers with exciting tools--such as computers-- to conduct inquiry and to understand science.
对《国家科学教育标准》较为重要的一些其他用语,诸如“教学”、“评价”、“学习机会”等等,都在用到这些术语的那些章节中分别作了界定。我们自始至终都很注意,尽可能不使用对与实施这部标准有关的许多群体来说有其不同含义的那些术语。
Additional terms important to the National Science Education Standards, such as “teaching,” “assessment,” and “opportunity to learn,” are defined in the chapters and sections where they are used. Throughout, we have tried to avoid using terms that have different meanings to the many different groups that will be involved in implementing the Standards.
References for Further Reading
略